Naturwissenschaftlich-Technische Fakultät Fachrichtung Systems Engineering

Modul					Abk.
Maschinelles Lernen für die Multisensorsignalverarbeitung					ML4MS
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	Jedes SS	1 Semester	3	4

Modulverantwortliche/r Prof. Dr. Andreas Schütze

Dozent/inn/en Prof. Dr. Andreas Schütze und Mitarbeiter*innen des Lehrstuhls

Messtechnik

Zuordnung zum Curriculum Master Systems Engineering;

Master Quantum Engineering; Master Embedded Systems

Zulassungsvoraussetzungen

Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen

 Bearbeitung von praktischen Übungsaufgaben und Präsentation der Ergebnisse

Mündliche Prüfung

Bearbeitung eines Themas aus dem Spektrum der Vorlesung

und Präsentation im Rahmen eines Seminarvortrags

Lehrveranstaltungen / SWS

Vorlesung Maschinelles Lernen für die

Multisensorsignalverarbeitung und begleitendes Seminar, 3 SWS,

V2 S1

Arbeitsaufwand

Vorlesung + Seminarvorträge 15 Wochen 2 SWS 30 h
Vor- und Nachbereitung 25 h
Praktische Übungen 5 h
Eigenständige Bearbeitung eines Themas aus dem Spektrum der Vorlesung 45 h
Dokumentation und Vortrag 15 h

Modulnote

Endnote wird berechnet aus den Teilnoten Übungsaufgabe, mündliche Prüfung und Seminarvortrag (20:30:50)

Lernziele/Kompetenzen

Kennenlernen verschiedener Methoden und Prinzipien für maschinelles Lernen, also Mustererkennung mittels statistischer Methoden, insbesondere für die Signalverarbeitung von Multisensorarrays; Bewertung unterschiedlicher Ansätze und Methoden für spezifische Fragestellungen. Eigenständige Erarbeitung von Methoden zur Signalverarbeitung und Darstellung der Vor- und Nachteile an Hand spezifischer Beispiele.

Inhalt

- Motivation für Multisensorsysteme und für Maschinelles Lernen
- Projektbeispiele zur Orientierung
- Overfitting und Validierungsmethoden:
 - Leave-one-out cross validation (LOOCV)
 - N-fold cross validation
 - Boot strapping
- Merkmalsextraktion und Signalvorverarbeitung

Naturwissenschaftlich-Technische Fakultät Fachrichtung Systems Engineering

- Statistische Signalverarbeitungsmethoden zur multivariaten Analyse
 - o PCA (principal component analysis)
 - LDA (linear discriminant analysis)
 - o Regressionsanalyse (PCR, PLSR)
- Support Vector Machines (SVM) und Support Vector Regression (SVR)
- Künstliche neuronale Netze ANN (artificial neural networks):
 - Motivation und Aufbau
 - o Lernalgorithmus (backpropagation) und empirische Modifikationen
 - Netzwerkstrukturbildung
 - o Rekurrente Netzwerke
- Learning Vector Quantization und Self Organizing Maps
- Novelty Detection: Erkennung von Ausreißern und neuen Zuständen
- Anwendungsbeispiele zur Mustererkennung, qualitativen und quantitativen Auswertung
- Herausforderungen in der Praxis, u.a. domain shift, inbalanced data sets
- Erarbeitung eines individuellen Themas im Rahmen eines Seminarvortrags

Weitere Informationen

Vorlesungsunterlagen (Folien) und Übungen werden begleitend im Internet zum Download bereitgestellt; begleitende praktische Übungen werden z.T. an Hand von Rechnersimulationen (Merkmalsextraktion, Vorverarbeitung, SVM/SVR, LDA/PCA, etc.) durchgeführt. Die Vorlesung ist kombiniert mit einem Seminar, in dem die Teilnehmer eigenständig Teilthemen erarbeiten und präsentieren.

Unterrichtssprache: deutsch

Literaturhinweise:

(alle Bücher können am Lehrstuhl für Messtechnik nach Rücksprache eingesehen werden)

- begleitendes Material zur Vorlesung (http://www.lmt.uni-saarland.de);
- R.O. Duda et. al.: "Pattern Classification", sec. ed., Wiley-Interscience;
- A. Zell: "Simulation Neuronaler Netze", R. Oldenbourg Verlag, 2000;
- T. Kohonen: "Self-Organizing Maps", Springer Verlag, 2001;
- F. Höppner et. al.: "Fuzzy-Clusteranalyse", Vieweg, 1997;
- H. Ahlers (Hrsg.): "Multisensorikpraxis", Springer Verlag Berlin, 1997
- T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (eds.): "Handbook of Machine Olfaction Electronic Nose Technology", WILEY-VCH, 2003.
- Diverse Publikationen des Lehrstuhls für Messtechnik