

Übung 2 zur Vorlesung Mikrosensorik

Aufgabe 1 - Grundlagen der NDIR-Messung

- a) Erklären Sie kurz Aufbau und Funktionsweise eines typischen NDIR-Messsystems.
- b) Welche Eigenschaften müssen Gase bzw. Schwingungsmoden grundsätzlich aufweisen, damit sie mit diesem Prinzip messbar sind? Erläutern Sie, warum die IR-Messung sowohl zur Identifikation als auch Quantifizierung von Gasen nutzbar ist!
- c) Welchen Vorteil hat die gleichzeitige Messung des Schalldrucks mittels Mikrofonen in der mit Gas gefüllten Messkammer? Welche Komponenten können dann entfallen?

Aufgabe 2 – Isotopentrennung

Abbildung 1 zeigt eine spektral aufgelöste IR-Transmissionsmessung von (normalem) CO₂, CO₂ mit dem Isotop ¹³C (kurz ¹³CO₂) sowie deren Gemischen bei verschiedenen Verhältnissen. CO₂ zeigt ein Absorptionsmaximum bei einer Wellenlänge von 4,26 μm, wohingegen das Isotop ¹³CO₂ ein verschobenes Absorptionsmaximum aufweist.

Erklären Sie, woher diese Verschiebung kommt und berechnen Sie näherungsweise die Wellenlänge des Absorptionsmaximums von ¹³CO₂. (Hinweis: Gehen Sie dabei davon aus, dass das Molekül sich als Feder-Masse-System darstellen lässt und sich die Federkonstante nicht ändert).

Erklären Sie die Schulter (leichte Asymmetrie) der Absorption des normalen CO₂ bei größeren Wellenlängen!

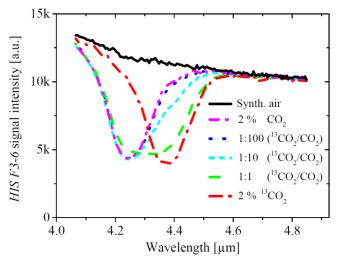
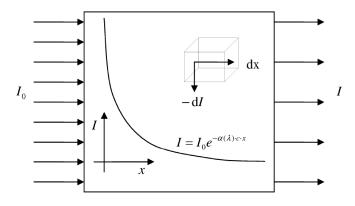


Abbildung 1: IR-Transmissionsmessung von CO₂ und reinem ¹³CO₂ Isotop [1]



Aufgabe 3 – Berechnung der Absorption mittels Lambert-Beer.

Allgemein lautet das Lambert-Beersche Gesetz:

$$I_T = I_0 \cdot e^{(-\alpha(\lambda) \cdot c \cdot d)}$$

mit $\alpha(\lambda)$ dem Absorptionskoeffizienten bei der Wellenlänge λ , c der Konzentration des Gases und der Wegstrecke, die die Strahlung im Gas zurücklegen muss, siehe Abbildung 2.

Abbildung 2: Absorption [2]

In Abbildung 3 sind hierbei für CO₂ die verschiedenen, sehr schmalbandigen Absorptionsbanden dargestellt. Diese besitzen Halbwertsbreiten (FWHM) von ca. 0,3 nm bei Abständen von jeweils ca. 3 nm und resultieren aus der Überlagerung von Rotationsenergie und Schwingungsenergie.

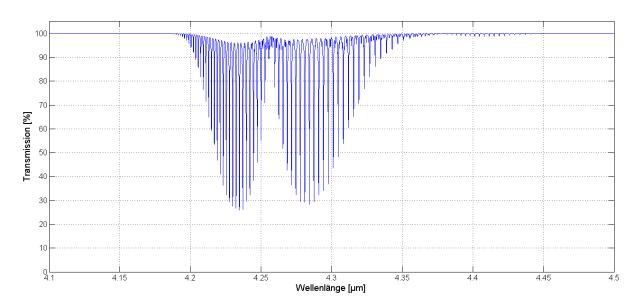


Abbildung 3: Absorptionsbanden von CO₂

Im Folgenden soll die Transmission eines Gases bei verschiedenen Konzentrationen für eine vereinfachte Annahme der Absorptionslinien und bei Verwendung einer relativ breitbandigen Quelle berechnet werden.

Lehrveranstaltung: Mikrosensorik WS2019/20

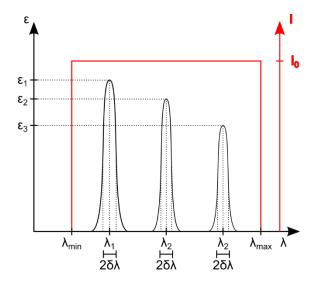


Abbildung 4: Exemplarische Darstellung von drei Absorptionsbanden mit verschiedenen Extinktionskoeffizienten ϵ_1 bis ϵ_3 und einer breitbandigen Strahlungsquelle mit konstanter Intensität ϵ_3 .

Die Strahlungsquelle soll im Wellenlängenbereich zwischen λ_{min} und λ_{max} mit λ_{max} - λ_{min} = 5 nm eine konstante Intensität I₀ aufweisen, siehe Abbildung 4. Die drei in diesem Bereich liegenden Absorptionsbanden bei den Wellenlängen λ_1 , λ_2 und λ_3 sollen in ihrem Absorptionsbereich λ_i ± $\delta\lambda$ jeweils einen konstanten Extinktionskoeffizienten α_1 = $3x10^{-4}$ (ppm·cm)⁻¹, α_2 = $2x10^{-4}$ (ppm·cm)⁻¹ bzw. α_3 = $3x10^{-5}$ (ppm·cm)⁻¹ aufweisen, wobei die Halbwertsbreiten $2\delta\lambda$ jeweils eine Ausdehnung von 0,3 nm haben.

- a) Berechnen Sie für eine Absorptionslänge von 10 cm unter Annahme eines mittleren Extinktionskoeffizienten α_m die erwartete Transmission für Gaskonzentrationen von $c_1 = 400$ ppm und $c_2 = 1000$ ppm.
- b) Berechnen Sie für die beiden Gaskonzentrationen die Transmission unter Beachtung der wellenlängenabhängigen Extinktionskoeffizienten und vergleichen Sie die Ergebnisse mit dem Ergebnis aus a).
- c) Bestimmen Sie den Extinktionskoeffizienten α^* , unter dessen Annahme das Lambert-Beer'sche Gesetz die gleiche Transmission liefern würde wie in Aufgabenteil b) für eine Gaskonzentration von c_1 = 400 ppm berechnet.
- d) Bestimmen Sie unter Annahme des Extinktionskoeffizienten α* aus Aufgabenteil c) die erwartete Transmission für eine Gaskonzentration von 1000 ppm und vergleichen Sie diese mit der tatsächlichen Transmission unter Beachtung der wellenlängenabhängigen Extinktionskoeffizienten und dem Ergebnis aus b).

[2] Werner Schmidt: "Optische Spektroskopie – Eine Einführung", 2. Auflage, Wiley-VCH, Weinheim, 2000

^[1] Karsten Kühn, Michael Siegwart, Eliseo Pignanelli, Tilman Sauerwald and Andreas Schütze: Versatile Infrared Gas Measurement System with tunable Microstructured Fabry-Pérot Filter; Proc. I2MTC 2012: IEEE International Instrumentation and Measurement Conference, Graz, Austria, May 13-16, 2012.