Condition Monitoring mit statistischen Methoden: was uns Rauschen und Kurtosis sagen können über Maschinenzustände

Prof. Dr. Andreas Schütze

Lehrstuhl für Messtechnik, FR Systems Engineering

Nikolai Helwig, Tizian Schneider Zentrum für Mechatronik und Automatisierungstechnik GmbH

Die Arbeitsgruppe

Fokus: Intelligente Sensorsysteme zur Messung chemischer Größen, sowohl für die Gasphase als auch in Flüssigkeiten. Wir nutzen sowohl chemische als auch physikalische Effekte und verknüpfen (Mikro-)Sensoren mit Elektronik für Betrieb und Datenerfassung sowie mit angepassten Signalverarbeitungskonzepten zu komplexen Messsystemen.

Zwei sich ergänzende Bereiche

- Lehrstuhl für Messtechnik, Universität des Saarlandes
 - Grundlagenforschung
 - Schwerpunkt Gasmesstechnik, u.a. Luftgüte
- Zentrum für Mechatronik und Automatisierungstechnik
 - Angewandte F&E
 - Schwerpunkt Condition Monitoring, u.a. Ölqualität

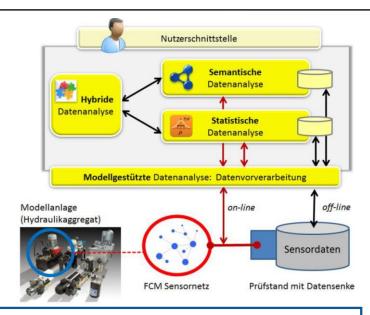
> Warum Messung chemischer Größen?

- Sicherheitstechnik
 - Explosionsschutz, z.B. CH₄ im Bergbau (bzw. im Haushalt)
 - Vergiftungsschutz, z.B. CO im Bergbau (bzw. im Parkhaus)
- Qualitätskontrolle
 - Dichtheitsprüfung von Verpackungen
 - Prüfung von Lebensmitteln
 - Ölqualität z.B. in Flugzeughydraulik und BHKW
- Umwelttechnik
 - Abgaskontrolle und -regelung, z.B. Lambda-Sonde im Pkw
 - Erkennung von Umweltverschmutzung, Identifizierung der Verursacher
- Komfortanwendungen
 - bedarfsgerechte Lüftung in Toiletten und Küchen
 - automatische Umluftklappe im Pkw

Intelligentes Condition Monitoring – Motivation und Ziele

Motivation

- Verfügbarkeit vieler **Sensordaten** aber **wie** sind diese **zu deuten**?
- Vernetzung von Sensorinformationen zur Verbesserung der Robustheit
- Frühzeitiges Erkennen von Anomalien und Planbarkeit von Wartungsarbeiten



Vorgehen

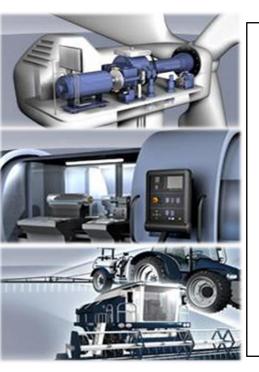
- Datenbasiert: Merkmalsextraktion und Mustererkennung (→ ZeMA)
- Wissensbasiert: Semantische Modellbildung und Analyse (→ DFKI)
- Aufbau von Prüfständen zur Validierung des Systems

Ziele

- Schadensdetektion und -diagnose
- **Selbstüberwachung** auf Sensorfehler und Kompensation ausgefallener Sensoren
- Adaptierbarkeit auf unterschiedliche Anlagen

Intelligent Condition Monitoring

Condition-based maintenance requires human experts to interpret complex interdependencies between measured sensor data and system conditions

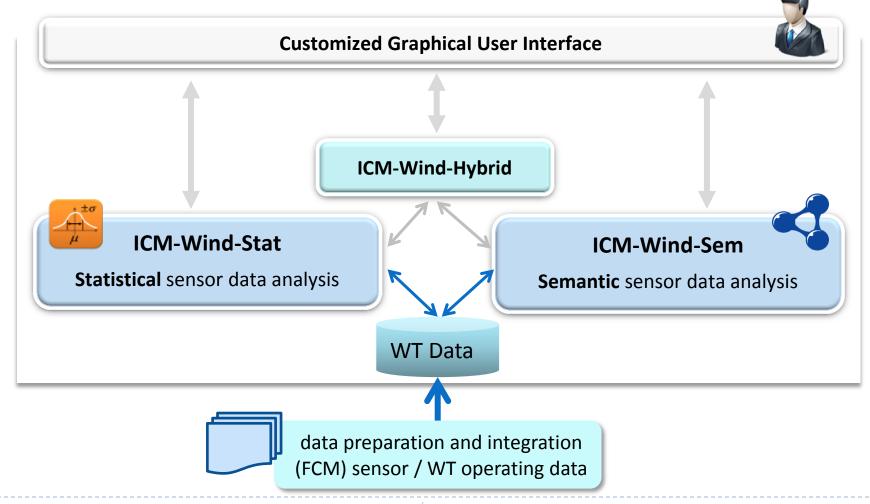


CM Automation Challenges

- Knowledge-based explanation of detected faults to experts and non-experts
- Fast quantitative and qualitative reasoning on sensor data for fault detection and diagnosis
- Adaptation to different hydraulic systems

Origins: iCM-Wind

▶ Analysis of ~1.5 years historical data from 2 wind turbines



Conclusions from iCM-Wind

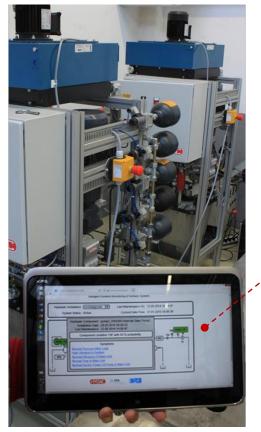
- ▶ Statistical sensor data analysis is promising for condition monitoring and prediction of oil filters.
 - But: data quality insufficient for in depth analysis
- Semantic sensor data analysis in addition allows logical interpretation for condition monitoring.
 - But: strongly depends of quality of domain model
- First concept of **hybrid analysis** offers added value compared to both types of evaluation individually.

Requirements for further development:

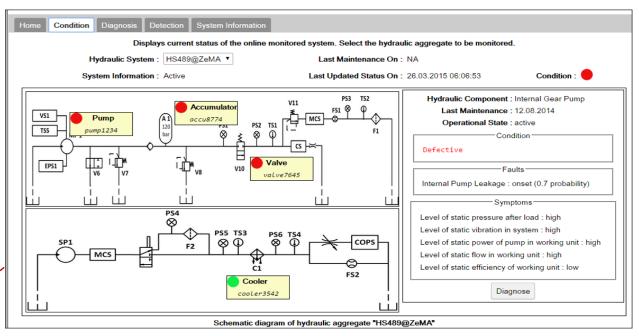
- Lab model of a complex system with various components and sensors
- Experimental modelling of fault scenarios (degradation, component failure)
- → Project iCM Hydraulic

iCM-Hydraulic

 Combines statistic and semantic technologies to detect and diagnose probable faults with user understandable explanation



Mobile client for monitoring hydraulic test benches



Information on probability and symptom states for Pump's 'Poor' condition. "Diagnose" details possible causes of fault and condition.

- Configuration: 2 hydraulic test benches, 17 sensors, 1 min working cycle
- Performance: 50k obs/min per bench (throughput)
- Fast offline and online analysis

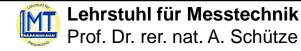
Experimenteller Aufbau und Schadensszenarien

- Hydraulische Prüfstände
 - Arbeits- und Kühlkreislauf
 - ExperimentelleSchadenssimulation vonKomponenten
 - Zwei Systeme
 - Charakterisierung von Schadenszuständen
 - Langzeit- und Übertragbarkeits analyse

Hydraulisches System I
mit PS Druck, FS Fluss,
TS Temperatur, VS
Vibration and EPS EI.
Leistungs-Sensorik

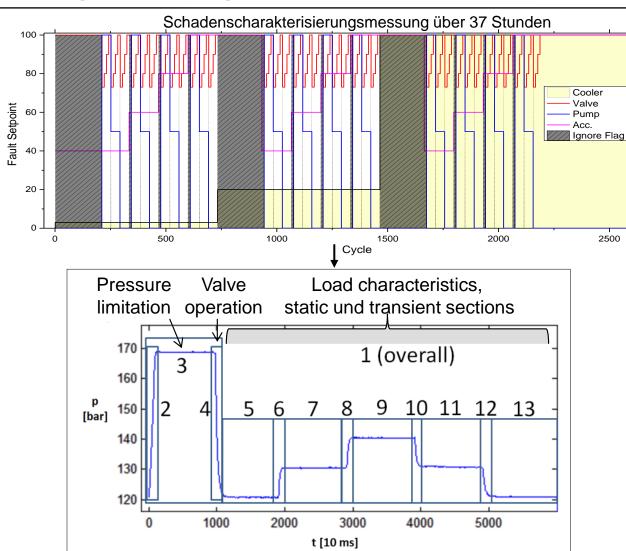
Komponente	Szenario	Eingriffsgröße	Bereich
Kühler	Abfall	Tastgrad des	0100 %
C 1	Kühlleistung	Lüfters	(0.62.2 kW)
Wegeventil	Verzögertes	Ansteuerstrom-	0100 % der
V10	Schaltverhalten	stärke V10	nomin. Stromstärke
Pumpe	Interne	Bypass Blenden	3 x 0.2 mm,
MP1	Leckage	(V9)	3 x 0.25 mm
Hydrospeicher (A1-A4)	Gas Leckage	Speicher A1-A4 mit unters. Vordrücken	90, 100, 110, 115 bar

Schadensgrößen und -bereiche



Schadens-Charakterisierungsmessungen

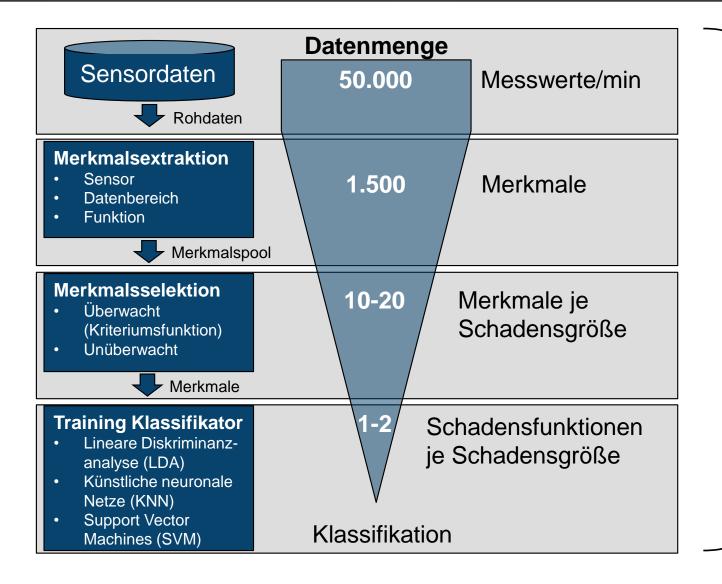
- Konfiguration von komplex verschachtelten Schadensverläufen
 - Kombinieren von Fehlertypen und Schweregraden
 - Vorteil:
 Berücksichtigung von
 Störgrößen und
 Quereinflüssen
- Während der Messung durchläuft das hydraulische System vordefinierte konstante Arbeitszyklen



Arbeitszyklus (Dauer 60 s, gemessen von PS1)

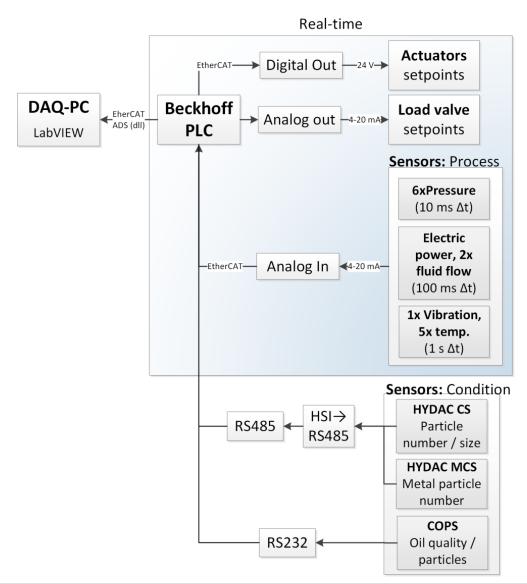
automatisierbar Vollständig

Vorgehensweise

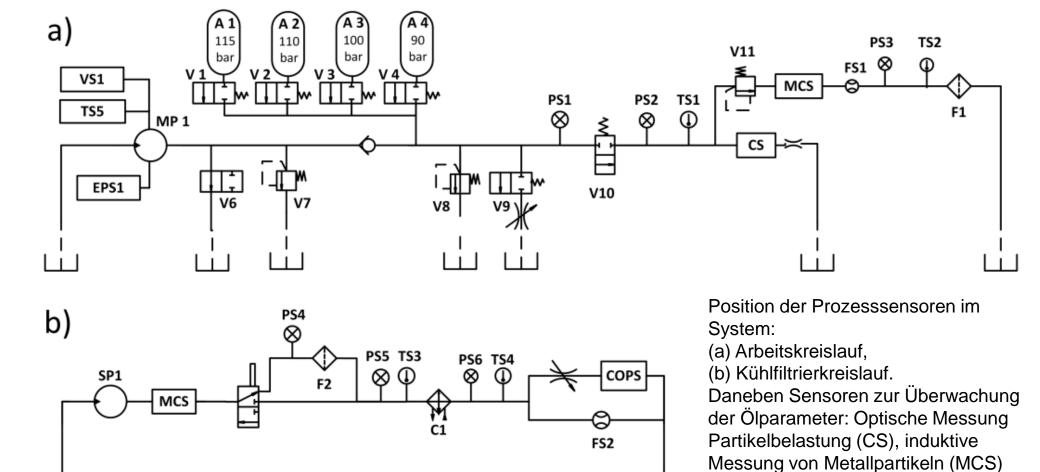


Sensoren und Steuerung

- Ablauf des Arbeitszyklus sowie Sensordatenaufzeichnung über SPS in Echtzeit gesteuert (Beckhoff IPC)
 - Sensordaten synchron zum Prozess
 - Samplingrate an Sensortyp und zugrundeliegende Messgröße angepasst
 - Messdaten von 17
 Prozesssensoren (14
 physikalische und 3 virtuelle
 Sensoren) sowie Verlauf der
 Schadensgrößen werden von
 DAQ-PC im ASCII Format
 abgelegt



Prozesssensoren im System

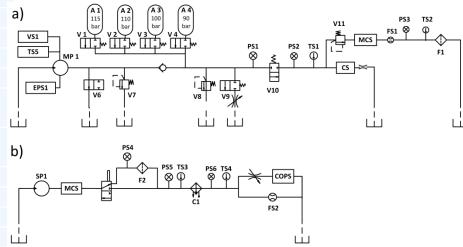


und optische Ölqualitäts- und

Partikelmessung (COPS)

Prozesssensoren im System

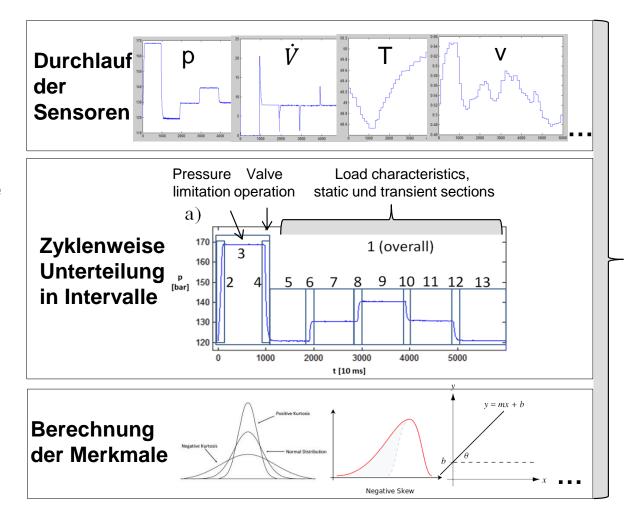
Sensor	Messgröße	Einheit	Abtastrate	Bemerkung	Тур
PS1	Druck	bar	100 Hz		Hydac HDA 4746
PS2	Druck	bar	100 Hz		Hydac HDA 4746
PS3	Druck	bar	100 Hz		Hydac HDA 4746
PS4	Druck	bar	100 Hz		Hydac HDA 4746
PS5	Druck	bar	100 Hz		Hydac HDA 4746
PS6	Druck	bar	100 Hz		Hydac HDA 4746
FS1	Volumenstrom	l/min	10 Hz	Turbinenmess- prinzip	Hydac EVS 3106
FS2	Volumenstrom	l/min	10 Hz	Turbinenmess- prinzip	Hydac EVS 3106
TS1	Temperatur	°C	1 Hz		Hydac ETS 7246
TS2	Temperatur	°C	1 Hz		Hydac ETS 7247
TS3	Temperatur	°C	1 Hz		Hydac ETS 7248
TS4	Temperatur	°C	1 Hz		Hydac ETS 7249
VS1	Vibration	mm/s	1 Hz	RMS Wert nach ISO10816	Hauber 6440
EPS1	Motorleistung	W	100 Hz	Dreiphasen- Leistungs- messklemme	Beckhoff EL3403
CE	Kühleffizienz	%	1 Hz	virtueller Sensor	-
СР	Kühlleistung	kW	1 Hz	virtueller Sensor	-
SE	Wirkungsgrad	%	1 Hz	virtueller Sensor	-



Position der Prozesssensoren im System: (a) Arbeitskreislauf, (b) Kühlfiltrierkreislauf. Daneben Sensoren zur Überwachung der Ölparameter: Optische Messung Partikelbelastung (CS), induktive Messung von Metallpartikeln (MCS) und optische Ölqualitäts- und Partikelmessung (COPS)

Merkmalsextraktion

- Berechnen von Merkmalswerten bei unters.
 Sensoren und Zyklusintervallen
- Genutzte Merkmale
 - Signalform(Steigung, Min, Max, Position des Maximums, ...)
 - Statistische
 Momente
 (Median,
 Varianz,
 Kurtosis,
 Schiefe)



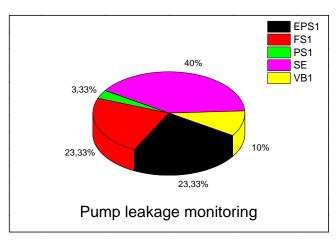
Merkmalsselektion

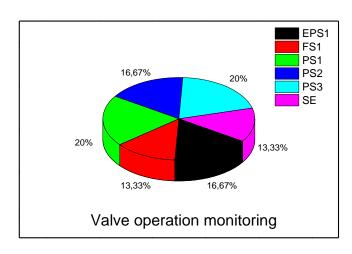
- Überwacht
 - Korrelation
 - Pearson
 - Spearman
 - ANOVA
- Ergebnis: Signifikante Merkmale zur Beschreibung von Schadens-/Verschleißzuständen von Komponenten

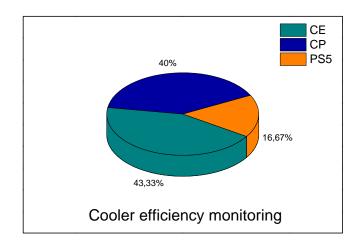
Beispiel: Liste signifikanter Merkmale (Pearson Korrelation)									1)						
C	ooler i	featur	es	Va	alve fe	ature	S	Р	Pump features Accumulator features				ures		
Sns	Fct	Int	r	Sns	Fct	Int	r	Sns	Fct	Int	r	Sns	Fct	Int	r
CE*	Me	10	0.99	PS1	Va	4	0.98	FS1	Me	5	0.42	EPS1	Sk	12	0.69
CE*	Me	12	0.99	PS2	Me	4	0.96	SE*	Me	8	0.38	PS2	Me	3	0.66
CE*	Me	2	0.99	PS2	Va	3	0.96	FS1	Va	9	0.34	FS1	SI	12	0.61
CE*	Me	4	0.99	PS2	Sk	3	0.95	SE*	Me	13	0.34	FS1	Va	1	0.59
CE*	Me	8	0.99	PS2	Ku	3	0.95	SE*	Me	9	0.34	FS1	Ku	12	0.59
CE*	Me	11	0.99	PS1	SI	4	0.95	SE*	Me	1	0.34	SE*	Sk	6	0.59
CE*	Me	6	0.99	SE*	Me	4	0.93	SE*	Me	2	0.33	SE*	Sk	12	0.58
CE*	Me	1	0.99	FS1	Sk	3	0.92	SE*	Me	10	0.31	PS2	Ku	6	0.58
CE*	Me	9	0.99	PS3	Sk	3	0.92	FS1	Me	9	0.31	PS1	Ku	12	0.57
CE*	Me	13	0.99	PS2	Sk	4	0.92	PS3	Me	11	0.31	FS1	Va	6	0.56
CE*	Me	3	0.99	PS3	Ku	3	0.9	PS3	Ме	9	0.3	EPS1	Sk	6	0.55
CE*	Me	5	0.99	PS1	Me	4	0.89	PS3	Me	8	0.3	FS1	Sk	12	0.55
CE*	Me	7	0.99	PS3	Me	4	0.88	FS1	Ме	11	0.29	PS3	Me	3	0.54
CP*	Me	10	0.99	FS1	Ku	3	0.87	FS1	Me	10	0.29	PS1	Ku	6	0.53
Ser	nsor	desc	riptio	า					Feat	ure f	unctio	on desc	cription	on	
CE: virtual sensor cooling efficiency CP: virtual sensor cooling power PS: pressur sensor SE: virtual sensor system efficiency FS: Flow sensor SI: Slope EPS: electrical power sensor pump															

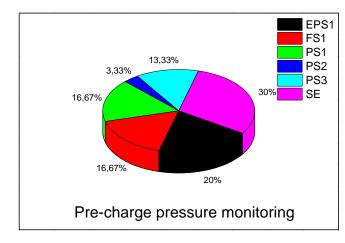
Aufschlüsselung signifikanter Sensoren

- Sensoren der 30 höchstkorrelierten Merkmale zu den untersuchten Schäden
- Insgesamt signifikant
 - Wirkungsgrad (SE, virtuell)
 - Motorleistung (EPS1)
 - Drücke (PS1-3)
 - Volumenstrom (FS1)
- Spezialfall Kühler-Überwachung









Weitere Dimensionsreduktion: Lineare Diskriminanzanalyse (LDA)

- Werkzeug zur überwachten Dimensionsreduktion (überwacht: benötigt Kenntnis über Zielgröße in Trainingsdaten)
- Lineare Projektion der zuvor selektierten Merkmale auf Diskriminanzfunktionen (DF), die den Schweregrad eines Schadens widerspiegeln
- Ziel: Maximieren der Klassentrennung (hier: Schadensstufen)
- Trainingsalgorithmus LDA: Identifizieren des Projektionsvektors zum Maximieren der Kriteriumsfunktion Γ

$$\Gamma = \frac{B}{W} = \frac{\sum_{g=1}^{G} I_g \cdot \left(\overline{Y}_g - \overline{Y}\right)^2}{\sum_{g=1}^{G} \sum_{i=1}^{I_g} \left(\overline{Y}_{gi} - \overline{Y}_g\right)^2} \qquad \begin{array}{c} G\colon \text{ number of classes} \\ I_g\colon \text{ number of elements in class g} \\ \overline{Y}_g\colon \text{ mean discriminant value in} \\ \overline{Y}\colon \text{ class g} \\ \overline{Y}_{gi}\colon \text{ overall mean} \\ \text{B: between class scattering} \qquad \text{mean discriminant value of} \end{array}$$

B: between class scattering W: within class scattering

mean discriminant value of

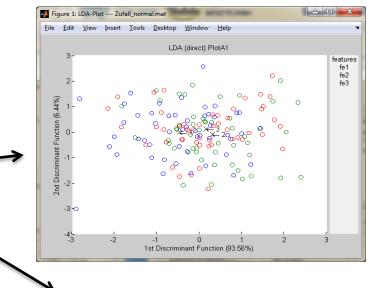
element i of class g

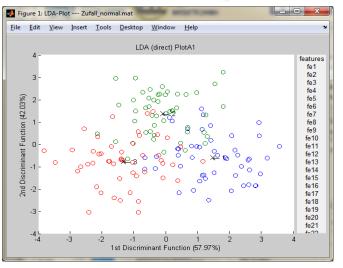
Overfitting: Aufpassen bei hochdimensionalen Datensätzen!

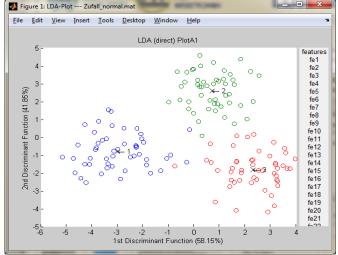
Beispiel für Overfitting: Konstruierter Datensatz mit 150 "Messungen" und 150 Merkmalen.

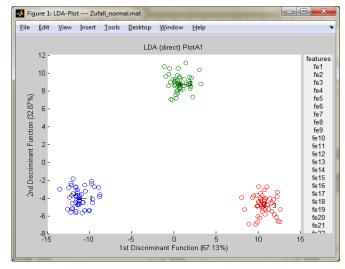
Die Merkmale stellen normalverteilte Zufallszahlen dar, also letztlich bloßes Rauschen.

Anzahl der verwendeten Merkmale: 3, 75, 125, 145





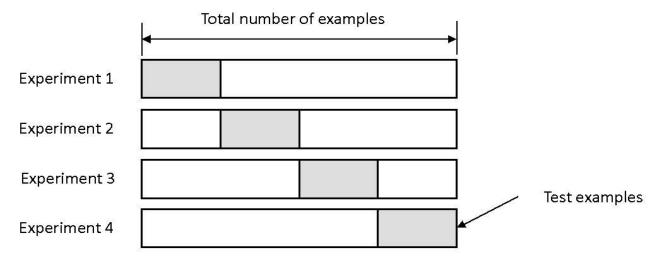




Validierungsmethoden zum Vermeiden von Overfitting

z.B. K-fold cross validation:

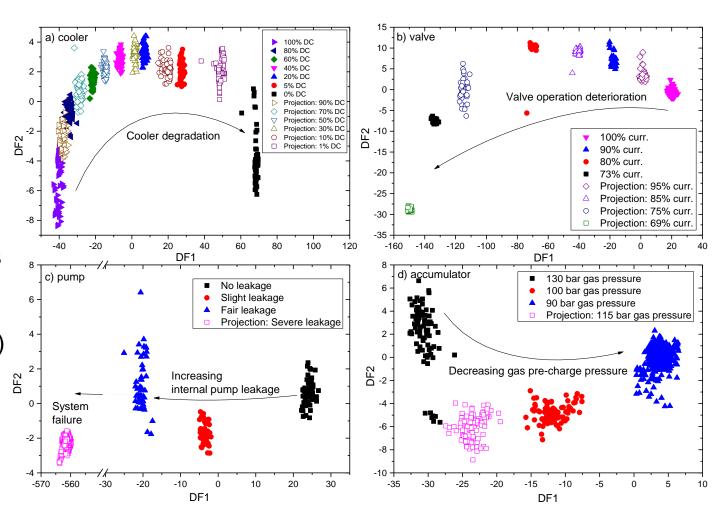
- Datensatz wird in K Gruppen aufgeteilt. Jeweils eine Gruppe wird als Test-Datensatz, der Rest als Trainings-Datensatz genutzt → K Durchläufe
- Klassifiziere gewählten Punkt an Hand der restlichen Daten mit der gewählten Signalverarbeitungsmethode (PCA/LDA, SVM, kNN, ggfs. plus Klassifikator)
- Klassifizierungserfolg wird angegeben als Prozentsatz der korrekt klassifizierten Datenpunkte
- Bei kleinem Datensatz: LOOCV oder KFCV mit großem K sinnvoll
 Bei großem Datensatz: KFCV mit kleinem K sinnvoll



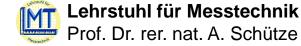
http://psi.cse.tamu.edu/teaching/lecture_notes/

Charakteristische LDA Schadensfunktionen

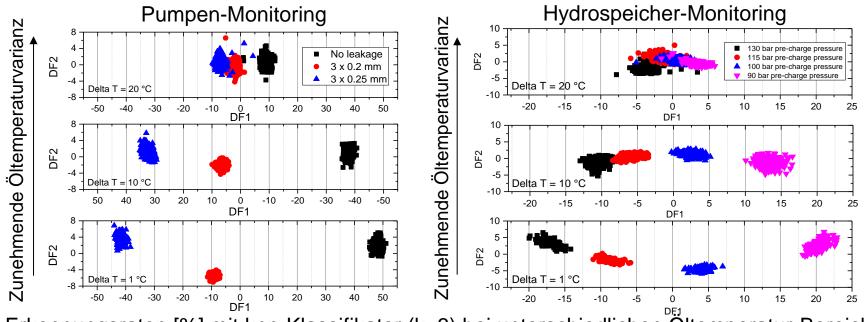
- Schadensverlauf wird in 2-D LDA-Raum dargestellt
- DF1 erlaubt die Quantifizierung des Schweregrades
- Evaluierung des statistischen Modells durch die Projektion von Zwischengruppen (→ Interpolation) erfolgreich



[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]



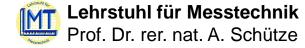
Öltemperatur als Einflussgröße



Erkennungsraten [%] mit knn-Klassifikator (k=3) bei unterschiedlichen Öltemperatur-Bereichen

	ΔT=1	°C, (n=	489)		ΔT=10 °C, (n=969)				ΔT=20 °C, (n=1449)			
	Cool	Valve	Pump	Acc	Cool	Valve	Pump	Acc	Cool	Valve	Pump	Acc
Pearson	100	100	100	100	100	100	100	100	100	100	99	83.25
Spearm.	100	100	100	100	100	100	100	99.75	100	100	98.5	84.75
ANOVA	100	100	100	100	100	100	100	99.5	100	100	98.75	88.25

- Schadenserkennung stark durch Öltemperaturbereich beeinflusst
- Trainingsdaten sollten Variationen der Öltemperatur beinhalten um Quereinflüsse gezielt unterdrücken zu können



Vergleich periodische und zufälliger Arbeitsprozesse

- Szenario I industrielle Applikation: vordefinierte und konstante Arbeitszyklen (Presse)
- Scenario II Mobilhydraulik: stark variierende Arbeitsabläufe (Radlader)
 - → Simuliert mit pseudo-zufälligen Lastniveaus

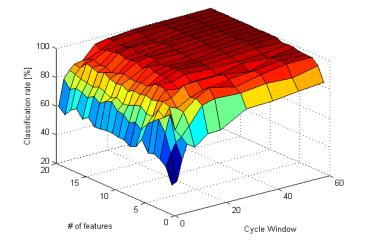
Vergleich der Klassifikationsraten [%] zwischen Klassifikationsraten [%] in Abh. vom Szenario (LDA, 20 Merkm.) typischen Klassifikationsmethoden

Arbeitszyklus		konstant		zufällig				LDA	ANN	SVIVI	SVM (DDE)
CorrKo	effizient	r	ρ	r	ρ		Mühler	400	100	(linear)	(RBF)
Zeit-	Kühler	100.0	100.0	100.0	100.0		Kühler	100	100	100	100
bereichs-	Ventil	100.0	100.0	100.0	100.0		Ventil	100	100	100	95.7
merkmale	Pumpe	97.9	98.0	72.3	73.6		Pumpe	73.6	80.0	72.4	64.2
	Speich.	90.4	88.8	54.2		· /	Speicher	54.0	50.4	51.6	65.7
	0 0 0 0 0 0		00.0	•			Ø	81.9	82.6	81.0	81.4

→ Keine deutliche Verbesserung mit ANN/SVM

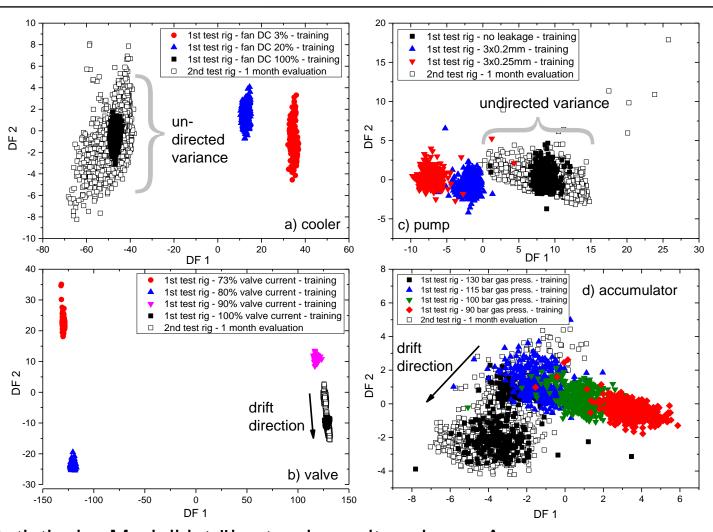
Idee: Zeitreihenanalyse über mehrere Zyklen mit anschließender Merkmalsextraktion

→ Deutliche Verbesserung der Fehlererkennungsrate für die pseudo-zufälligen Arbeitszyklen

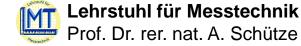


Stabilität und Übertragbarkeit

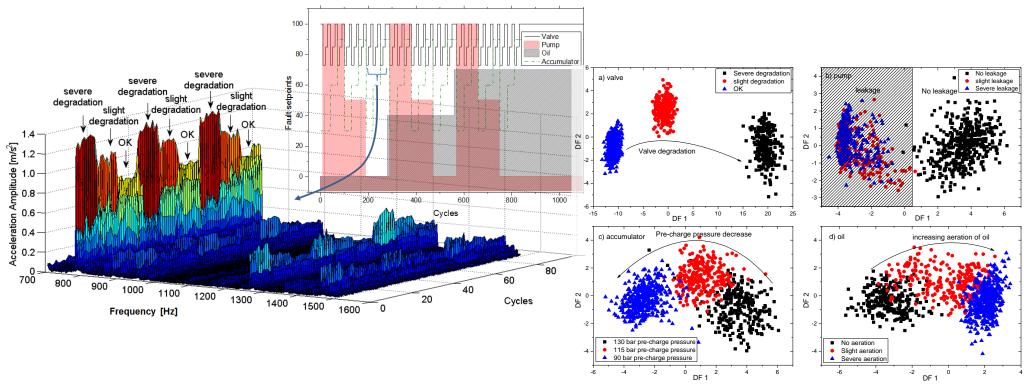
- Trainingsdaten mit Schadensinformation von System I (~ 1 Tag)
- Merkmalsextraktion, -selektion und Berechnung der LDA
- Projektion von
 Langzeitdaten (1
 Monat) von System II
 nach Offset-Abgleich



- → Das angelernte statistische Modell ist übertragbar mit geringen Anpassungen
- → Langzeit-Stabilität

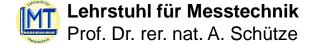


Übertragen des Konzepts auf spektrale Schwingungsdaten



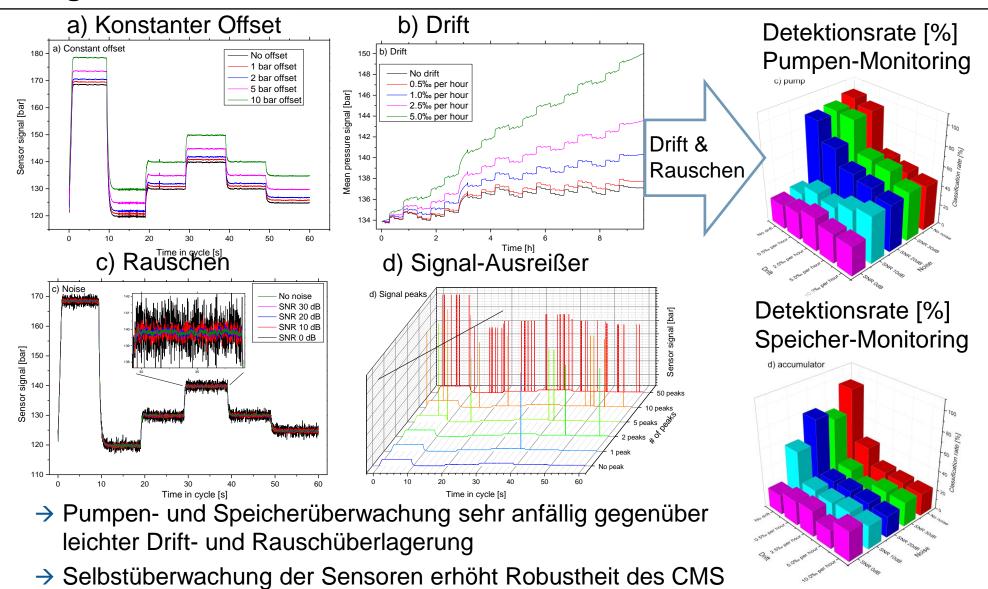
	Valve switching				Internal pump leakage			Accumulator pressure				Oil aeration				
	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct
1	2	4	1536 - 1792	Sk	2	12	1536 – 1792	Va	2	1	3328 - 3584	Ku	2	8	2816 - 3072	Va
2	2	4	3328 - 3584	Sk	2	6	1536 – 1792	Va	3	1	3328 - 3584	Ku	2	9	2816 - 3072	Va
3	2	4	768 – 1024	Max	2	10	1536 – 1792	Va	4	8	256 – 512	Va	1	3	256 – 512	Me
4	3	4	768 – 1024	Max	2	13	1536 – 1792	Va	2	1	3328 - 3584	Sk	1	1	256 – 512	Me
5	3	4	3328 - 3584	Sk	2	9	1536 – 1792	Va	3	1	3328 - 3584	Sk	1	4	256 – 512	Me
6	2	4	1536 - 1792	Ku	2	7	1536 - 1792	Va	4	11	256 - 512	Va	5	12	3584 - 3840	Va

[Quelle: N. Helwig, S. Klein, A. Schütze: Identification and Quantification of Hydraulic System Faults based on Multivariate Statistics using Spectral Vibration Features, Eurosensors 2015]



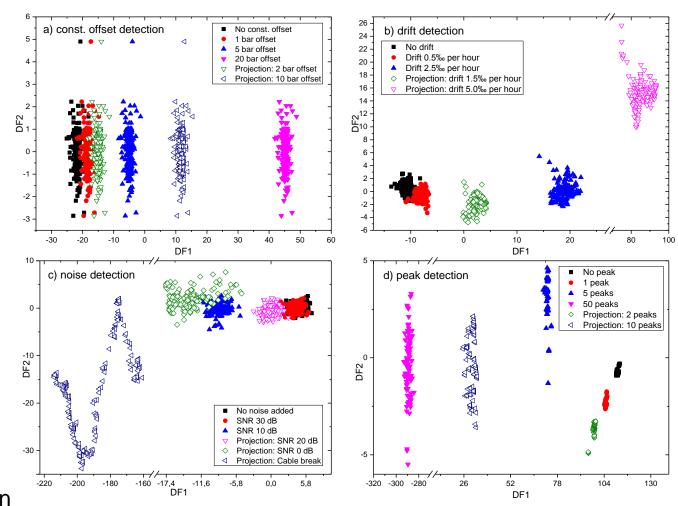
and Measurement Technology, May 19-21

Mögliches Problem: Sensorfehler und deren Einfluss



Übertragen des Konzepts zum Erkennen von Sensorfehlern

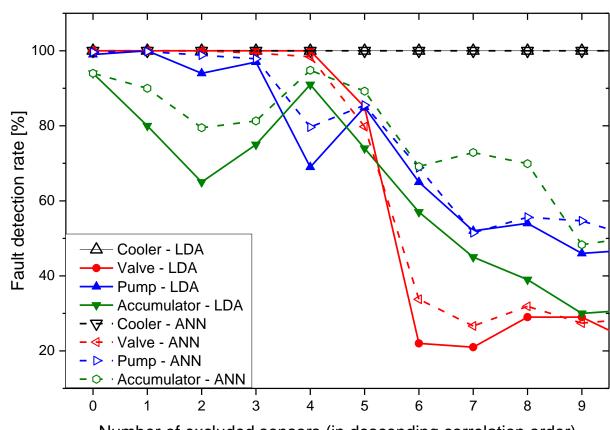
- Idee: Nutzen der Signalrelationen des Sensornetzes
- Merkmalsextraktion anhand Mittelwertquotienten (a, b), paarweisen Sensorsignal-Korrelationen (c) und statistischen Parametern (d)
- Erkennungslimit:
 - Konstanter Offset
 - 0.4 % Full Scale
 - Driftrate
 - 0.5 % pro Stunde
 - Rauschen
 - 20 dB SNR
 - Signal-Ausreißer
 - Einzelnes Event
- → Einzelne Sensorfehler können erkannt werden, bevor sie zu Fehlklassifizierungen führen



[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]

Kompensation ausgefallener Sensoren

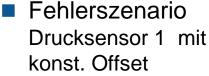
- Um Fehlalarme zu vermeiden, müssen die Daten von ausgefallenen Sensoren ausgeschlossen und das System neu antrainiert werden
- → Die "nächstbesten" Merkmale werden automatisch ausgewählt
- Bis zu fünf ausgefallene Sensoren können im Testsystem ohne signifikante Verschlechterung der Erkennungsrate kompensiert werden
- LDA im Vergleich zu anderen State-of-the-Art Methoden (ANN, SVM) konkurrenzfähig



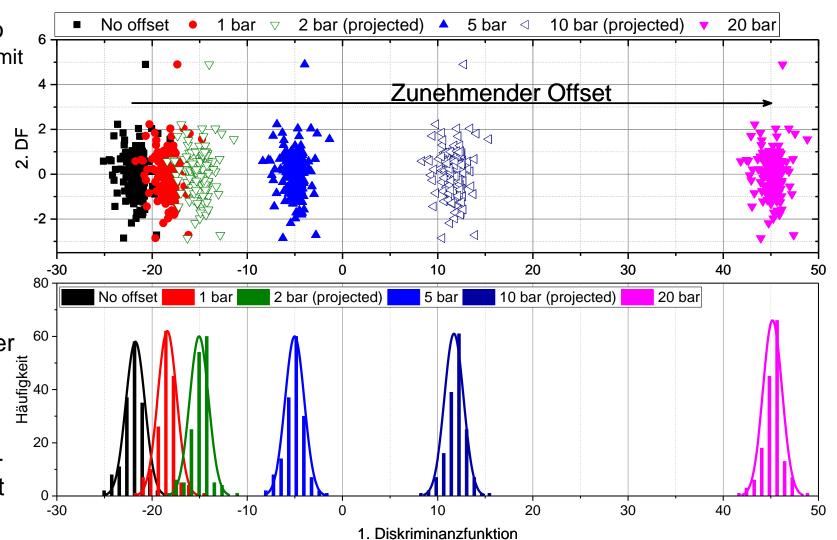
Number of excluded sensors (in descending correlation order)

[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]

Sensorfehler: Offset-Klassifizierung mit gleichbleibender Messunsicherheit

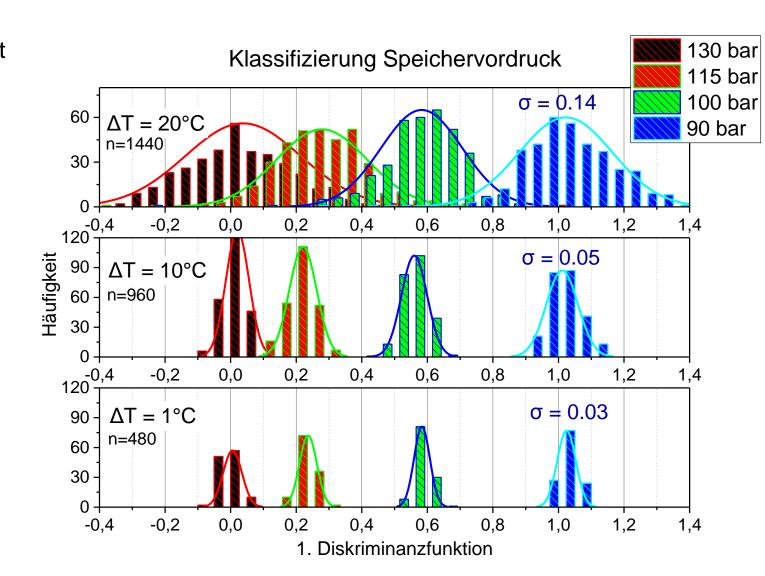


- Kalibrierung 0, 1, 5, 20 bar Offset
- Evaluierung2, 10 bar Offset
- Merkmale:
 Mittelwert verhältnisse der
 Sensoren
- N = 966
- → DF1 ist "Messwert" für Offset



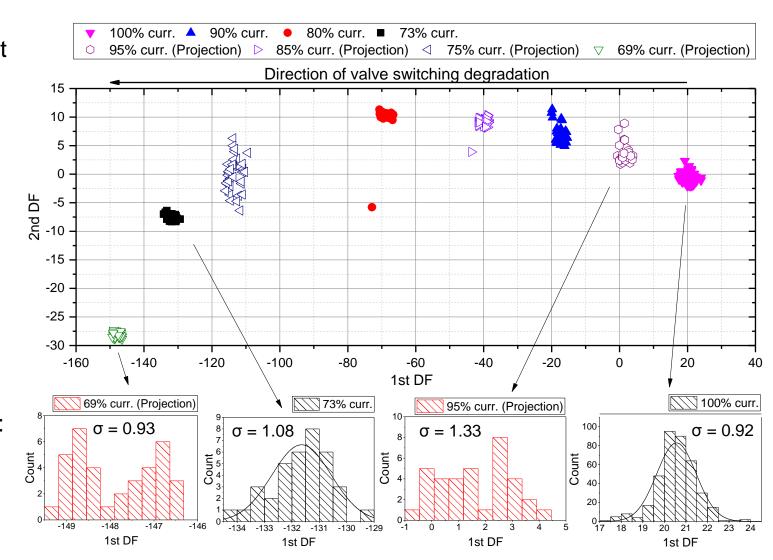
Klassifizierung des Speichervordrucks: Einfluss der Umgebungstemperatur auf die Messunsicherheit

- LDA Berechnung mit 20 Merkmalen
- 4 Blasenspeicherdruckniveaus: 130, 115, 100, 90 bar
- 3 Öltemperaturbereiche (ΔT): 1°C, 10°C, 20°C
- Größerer Temperaturbereich führt zu deutlich steigender Messunsicherheit (gleichmäßig für alle Druckniveaus, aber nicht linear mit ΔT)



Verschlechtertes Ventilschaltverhalten: Evaluierung zeigt andere Verteilung als Kalibrierdaten

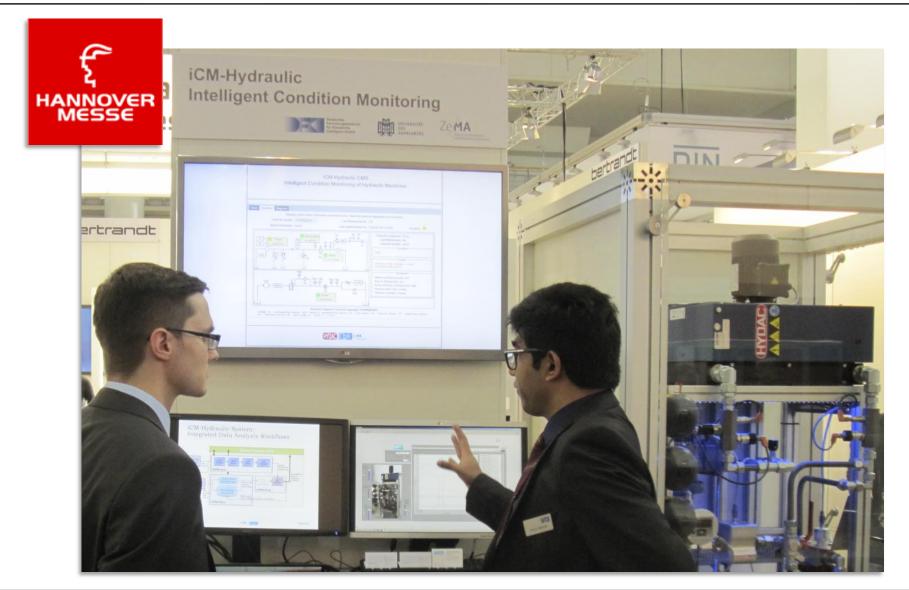
- LDA Berechnung mit 10 Merkmalen
- N = 488(Kalibrierung)
- Kalibrierzustände: 100%, 90%, 80%, 73%
 - → normalverteilt
- Evaluierung durch Projektion der nicht für die Berechnung genutzten Zustände:
 - nicht normalverteilt



Zusammenfassung zur Multiparameter-Signalverarbeitung

- Klassifikationsraten von oder nahe 100% bei betrachteten Schadensfällen auf Basis installierter Prozesssensordaten
- Transfer des statistischen Modells erfolgreich
- Ansatz übertragbar auf spektral ausgewertete Schwingungsdaten
- Detektion typischer Sensorfehler und Kompensation von bis zu 5 ausgefallenen signifikanten Sensoren im Testsystem
- Berechnungsdauer von ~120 Mio. Rohdatenpunkten (~ 1 Tag) (17 Sensoren, 6000 Werte pro Zyklus, 1250 cycles) @ Intel Core i5 CPU, 8 GB RAM
 - Merkmalsextraktion: ~ 5 min
 - Merkmalsselektion: 0,2 s pro Zielgröße
 - LDA: 0,1 s pro Zielgröße
 - Klassifikation eines neuen Zyklus: < 0,1 s pro Zielgröße
 - → Technisch umsetzbar
- Momentan Ausweitung des Ansatzes auf weitere Anwendungsgebiete (Antriebstechnik, Werkzeugmaschinen, Fertigungs- und Produktionsanlagen)

iCM-Hydraulic @ Hannover Messe 2015

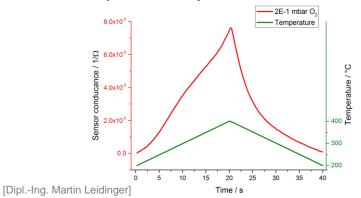


Automatisierte Merkmalsextraktion und -selektion

Masterarbeit Tizian Schneider

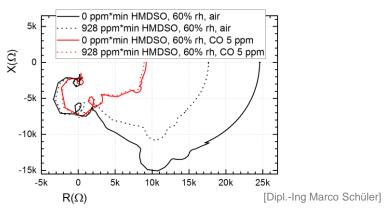
Anwendungsbeispiele

1. Temperaturzyklischer Betrieb



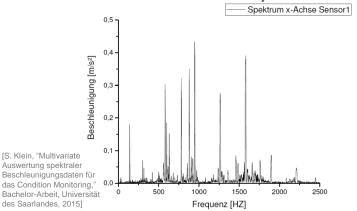
Gassensorik:

2. Impedanzspektroskopie

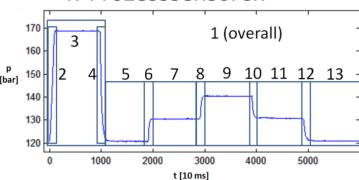


Zustandsüberwachung:

3. Vibrationsanalyse

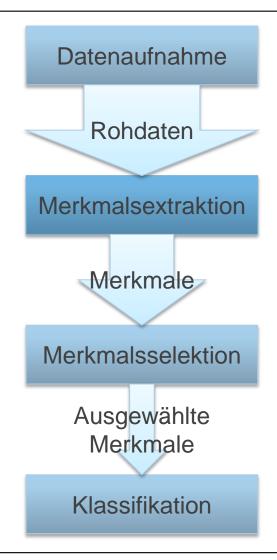


4. Prozesssensoren



[N. Helwig, E. Pignanelli, and A. Schütze, "Condition Monitoring of a Complex Hydraulic System using Multivariate Statistics," in *Instrumentation and Measurement Technology Conference (I2MTC)*, 2015, pp. 210–215]

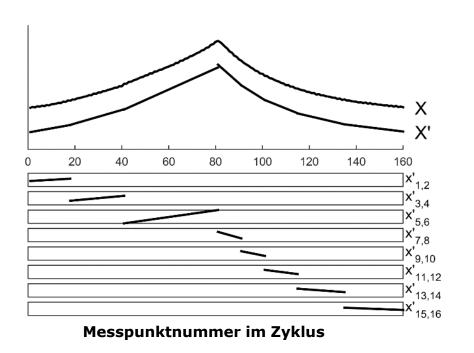
Merkmalsextraktion

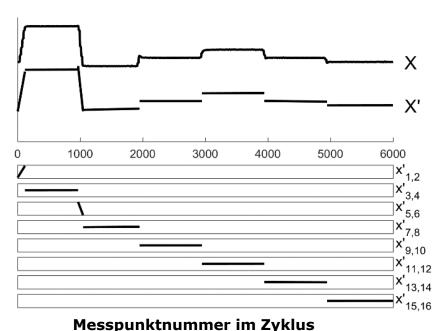


- Extrahiere fundamentale Merkmale des Zyklus
- Unüberwachter Schritt ohne Kenntnis des Gruppenzugehörigkeiten
- Keine Methode kann optimale Leistung garantieren
- Ziele:
 - Konzentriere Information in wenigen Merkmalen
 - Skalierbarkeit
 - Bewahre natürliche Strukturen im Datensatz

Merkmalsextraktion: Adaptive lineare Approximation

- Automatische Unterteilung in lineare Abschnitte
- Rauschunterdrückung
- Gut für Ecken, Kanten und im Zeitbereich lokalisierte Information

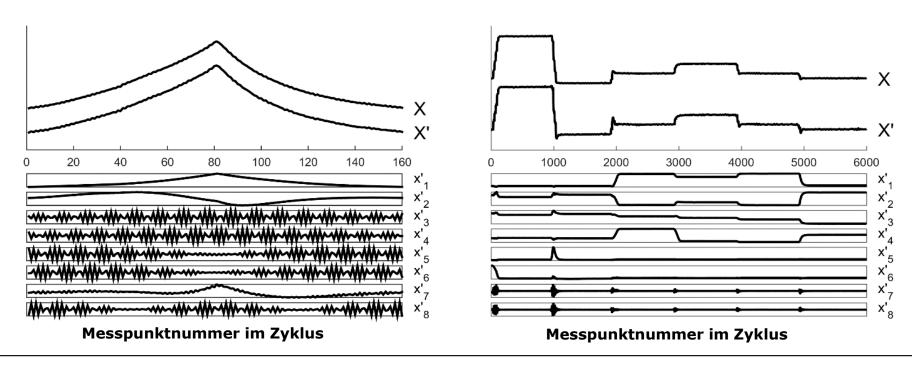




Seite 37

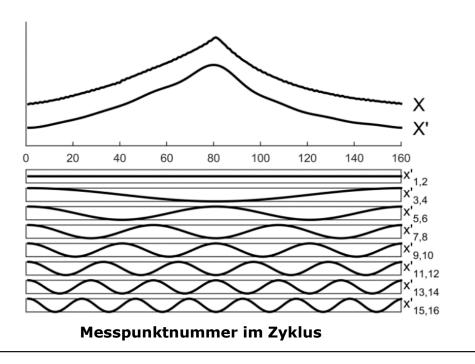
Merkmalsextraktion: Hauptkomponentenanalyse

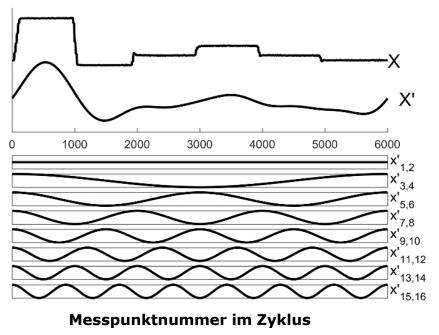
- Erste Hauptkomponenten beschreiben die Zyklusform
- Bartlett`s Test ermittelt die Anzahl benötigter Komponenten
- Beste lineare Transformation im Hinblick auf Approximationsfehler



Merkmalsextraktion: Beste Fourier Koeffizienten

- Transformation in den Frequenz-Bereich
- Für maximale Signalenergie extrahiere Koeffizienten mit größtem durchschnittlichen Betrag

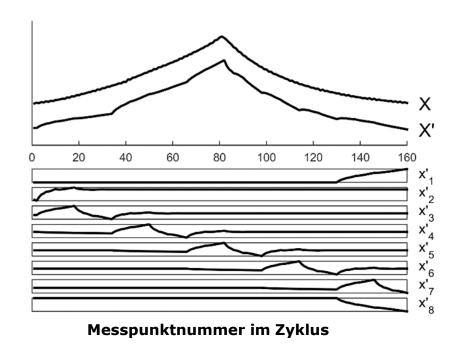


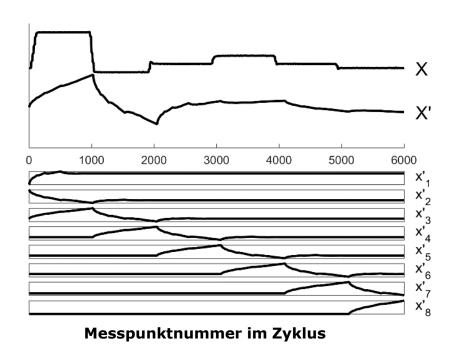


© ZeMA gGmbH Seite 39

Merkmalsextraktion: Beste Wavelet Koeffizienten

- Transformation in den Zeit-Frequenz-Bereich
- Daubechies-4-Wavelet zur Kompression linearer Signalbereiche
- Erste Koeffizienten für globale Merkmale und letzte für lokale Details

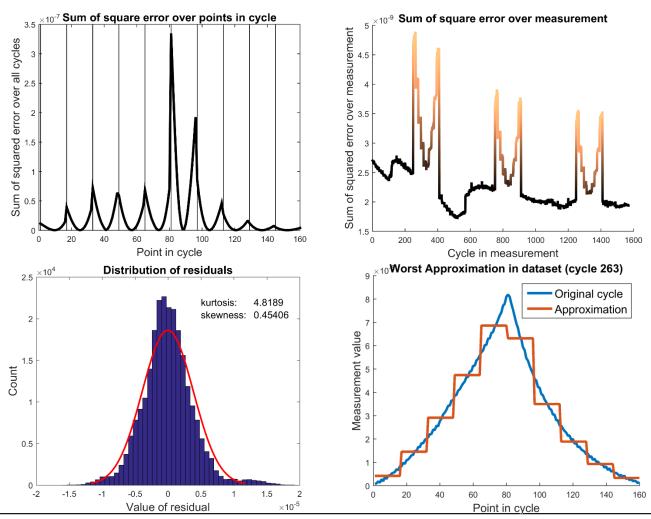




© ZeMA gGmbH Seite 40

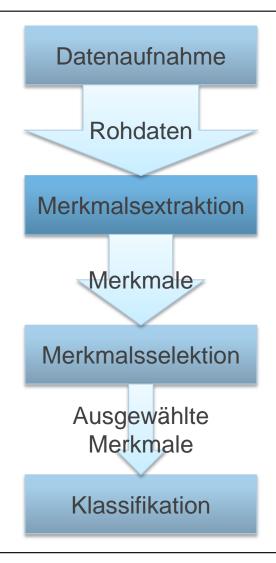
Merkmalsextraktion: Evaluation

■4-Fach Plot zur Qualität der Approximation



© ZeMA gGmbH Seite 41

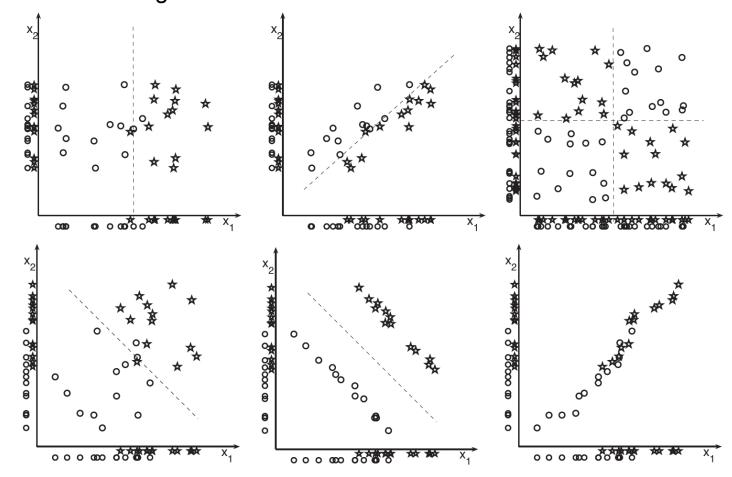
Merkmalsselektion



- Auswahl der besten Merkmale für maschinelles Lernen
- Überwachter Schritt → Validierung notwendig!
- Keine Methode kann optimale Leistung garantieren
- Ziele:
 - Konzentriere Information in wenigen Merkmalen
 - Skalierbarkeit

Merkmalsselektion: Typische Probleme

- Theoretisch nur Aussagen über "wahrscheinlich annährend irrelevante" Merkmale möglich
- Typische Probleme:



[I. Guyon, "An Introduction to Variable and Feature Selection," *J. Mach. Learn. Res.*, vol. 3, pp. 1157–1182, 2003]

66 Algorithmen betrachtet, 45 implementiert und getestet

	Filter Methods		Wrapper Methods	Embedded Methods
	Univariate	Multivariate		
Parametric	Model-free			
◆ <u>t-test</u>	 Wilcoxon rank sum 	• Bivariate	Sequential forward selection	 Random forest
• <u>Bayesian</u> <u>measure</u>	• BSS/WSS	• Minimum redundancy,	Sequential backward selection	Recursive feature elimination SVM (RFE-SVM)
• Regression • Goodman	Rank products Threshold number of missclassification TNoM	maximum relevance mRMR	Generalized sequential search Plus I-take away r	Weights of logistic regression Optimal Brain Damage (OBD)
and Kruskal`s Gamma	Spearman`s rank correlation coefficient	USC Markov blanket	Beam-Search Floating Search	Automatic Relevance Determination (ARD)
• <u>Pearson</u> correlation	Kendall tau rank correlation coefficientSignal to noise ratio	Relief AlgorithmPartial Least	Oscillating search Genetic algorithms	• Sensitivity of output
coefficient • Fisher	Kolmogorov-Smirnov testPearson`s Chi-squared test	Squares (PLS) • Group correlation	Rapid randomized pruning	 Forward selection with least squares
criterion Bhattachar	• <u>G-test</u>	Coefficient • 1R decision tree	Simulated annealing Estimation of distribution	<u>Decission trees</u><u>Gram Schmidt orthogonalisation</u> procedure
<u>ya distance</u>	<u>Kolmogorov distance</u> <u>Kullbak-Leibler divergence / mutual</u> information	• <u>C4.5 tree</u> • <u>CHAIS decision</u>	algorithms • Exhaustive search	• RFE perceptron
	Jeffreys-Matusita distance	• <u>CART decision</u>	<u>Branch and Bound</u> <u>BABM</u>	Bounds for Support Vector Machines Gradient Descent on the R²w²
	Vajda entropy / Bayes measureMemory based reasoning	<u>trees</u>		Bound Variable scaling with maximum
	Information and Entropy			entropy disrcimination
9	J-measure Average weight of evidence			 Joint Classifier and Feature Optimization
	Minimum description length MDI			• <u>Sparsity-term</u>

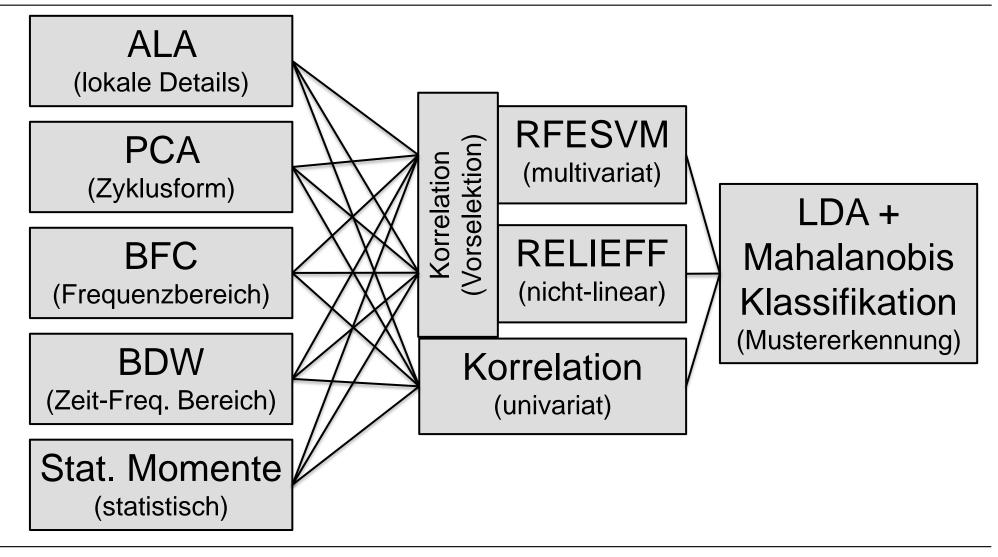
© ZeMA

Automatische Merkmalsselektion - Ergebnisse

dataset	LDA, standard.	LDA	1NN, standard.	1NN	SVM linear	SVM RBF- Kernel
UST/20	RELIEFF filter 0.72/5.41	RELIEFF filter 0.72/5.24	RFESVM 0.12/0.55	Goodman Gamma	Bhattacharyya distance	Sensitivity to Output
UST/210	RFESVM 0.72/-	RFESVM 0.72/-	mRmR 0.06/1.66	0.12/0.22 GCC forward 0.12/28.6	0.55/0.72 RFESVM 0.28/1.90	0.12/0.28 RFESVM 0.12/3.11
WO3/20	Linear regression 0.70/4.65	Genetic Mutation 0.64/4.53	GCC forward 0.06/0.51	Bhattacharyya distance 0.13/0.25	GCC forward 0.32/0.83	Linear regression 0.06/0.45
WO3/210	GCC forward 0.51/-	GCC forward 0.45/-	Kolmogorov- Smirnov test 0.19/8.86	RELIEFF filter 0.13/34.0	RFESVM 0.25/1.28	RFESVM 0.06/1.66
WO3/840	mRmR 0.51/-	mRmR 0.57/-	RELIEFF filter 0.13/9.24	RFESVM 0.19/32.2	RFESVM 0.06/0.89	RFESVM 0.06/1.79
HYD/1079 pump	RFESVM 0/-	RFESVM 0/-	RFESVM 0/30.3	Kendall Tau 0.28/16.9	RFESVM 0/0.97	RFESVM 0/10.5

Ausgewählt: RFESVM (lineare Klassifikation) und RELIEFF (nicht-lineare Klass.)

Methoden zur automatisierten Datenauswertung



Fazit automatisierte Auswertung

- Die vorgeschlagenen Methoden wurden auf sehr unterschiedliche, reale Datensätze angewandt.
- Trotz des relativ simplen Lernalgorithmus wurden auf allen Datensätzen hervorragende Ergebnisse erzielt.
- Ansatz liefert zwar keine Garantie für optimale, aber eine hohe Wahrscheinlichkeit für sehr gute Ergebnisse

