Condition Monitoring mit statistischen Methoden: was uns Rauschen und Kurtosis sagen können über Maschinenzustände

Prof. Dr. Andreas Schütze

Lehrstuhl für Messtechnik, FR Systems Engineering

Nikolai Helwig, Tizian Schneider Zentrum für Mechatronik und Automatisierungstechnik GmbH

Fokus: Intelligente Sensorsysteme zur Messung chemischer Größen, sowohl für die Gasphase als auch in Flüssigkeiten.

Wir nutzen sowohl chemische als auch physikalische Effekte und verknüpfen (Mikro-)Sensoren mit Elektronik für Betrieb und Datenerfassung sowie mit angepassten Signalverarbeitungskonzepten zu komplexen Messsystemen.

Zwei sich ergänzende Bereiche

- Lehrstuhl für Messtechnik, Universität des Saarlandes
 - Grundlagenforschung
 - Schwerpunkt Gasmesstechnik, u.a. Luftgüte
- Zentrum für Mechatronik und Automatisierungstechnik
 - Angewandte F&E
 - Schwerpunkt Condition Monitoring, u.a. Ölqualität

- Sicherheitstechnik
 - Explosionsschutz, z.B. CH₄ im Bergbau (bzw. im Haushalt)
 - Vergiftungsschutz, z.B. CO im Bergbau (bzw. im Parkhaus)
- Qualitätskontrolle
 - Dichtheitsprüfung von Verpackungen
 - Prüfung von Lebensmitteln
 - Ölqualität z.B. in Flugzeughydraulik und BHKW
- Umwelttechnik
 - Abgaskontrolle und -regelung, z.B. Lambda-Sonde im Pkw
 - Erkennung von Umweltverschmutzung, Identifizierung der Verursacher
- Komfortanwendungen
 - bedarfsgerechte Lüftung in Toiletten und Küchen
 - automatische Umluftklappe im Pkw

Intelligentes Condition Monitoring – Motivation und Ziele

Challenges

Intelligent Condition Monitoring

 Condition-based maintenance requires human experts to interpret complex interdependencies between measured sensor data and system conditions

- Knowledge-based **explanation** of detected faults to experts and non-experts
- Fast **quantitative and qualitative reasoning** on sensor data for fault detection and diagnosis
- Adaptation to different hydraulic systems

Origins: iCM-Wind

► Analysis of ~1.5 years historical data from 2 wind turbines

7е∕М

Conclusions from iCM-Wind

- Statistical sensor data analysis is promising for condition monitoring and prediction of oil filters.
 - But: data quality insufficient for in depth analysis
- Semantic sensor data analysis in addition allows logical interpretation for condition monitoring.
 - But: strongly depends of quality of domain model
- First concept of hybrid analysis offers added value compared to both types of evaluation individually.

Requirements for further development:

- Lab model of a complex system with various components and sensors
- Experimental modelling of fault scenarios (degradation, component failure)

→ Project iCM Hydraulic

iCM-Hydraulic

 Combines statistic and semantic technologies to detect and diagnose probable faults with user understandable explanation

Mobile client for monitoring hydraulic test benches

Information on probability and symptom states for Pump's 'Poor' condition. "Diagnose" details possible causes of fault and condition.

- Configuration: 2 hydraulic test benches, 17 sensors, 1 min working cycle
- Performance: 50k obs/min per bench (throughput)
- Fast offline and online analysis

Experimenteller Aufbau und Schadensszenarien

- Hydraulische Prüfstände
 - Arbeits- und Kühlkreislauf
 - Experimentelle
 Schadenssimulation von
 Komponenten
 - Zwei Systeme
 - 1. Charakterisierung von Schadenszuständen
 - 2. Langzeit- und Übertragbarkeitsanalyse

Schadensgrößen und -bereiche

	Komponente	Szenario	Eingriffsgröße	Bereich
	Kühler	Abfall	Tastgrad des	0100 %
	C1	Kühlleistung	Lüfters	(0.6…2.2 kW)
	Wegeventil	Verzögertes	Ansteuerstrom-	0100 % der
	V10	Schaltverhalten	stärke V10	nomin. Stromstärke
	Pumpe	Interne	Bypass Blenden	3 x 0.2 mm,
	MP1	Leckage	(V9)	3 x 0.25 mm
nd	Hydrospeicher (A1-A4)	Gas Leckage	Speicher A1-A4 mit unters. Vordrücken	90, 100, 110, 115 bar

2015, Pisa, Italy (accepted 2015).]

Condition Monitoring of a Complex Hydraulic

[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Condition Monitoring of a Complex System using Multivariate Statistics, 2015 IEEE International Instrumentation and Measurement Technology Conference (I²MTC), May 11-14, 2015, Pisa, Italy (acce

Schadens-Charakterisierungsmessungen

⁻ault Setpoint

- Konfiguration von komplex verschachtelten Schadensverläufen
 - Kombinieren von Fehlertypen und Schweregraden
 - Vorteil: Berücksichtigung von Störgrößen und Quereinflüssen
- Während der Messung durchläuft das hydraulische System vordefinierte konstante Arbeitszyklen

Arbeitszyklus (Dauer 60 s, gemessen von PS1)

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Sensoren und Steuerung

- Ablauf des Arbeitszyklus sowie Sensordatenaufzeichnung über SPS in Echtzeit gesteuert (Beckhoff IPC)
 - Sensordaten synchron zum Prozess
 - Samplingrate an Sensortyp und zugrundeliegende Messgröße angepasst
 - Messdaten von 17
 Prozesssensoren (14
 physikalische und 3 virtuelle
 Sensoren) sowie Verlauf der
 Schadensgrößen werden von
 DAQ-PC im ASCII Format
 abgelegt

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Prozesssensoren im System

Dertikelmeesung (CODS)

Partikelmessung (COPS)

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Prozesssensoren im System

Sensor	Messgröße	Einheit	Abtastrate	Bemerkung	Тур
PS1	Druck	bar	100 Hz	3	Hydac HDA 4746
PS2	Druck	bar	100 Hz		Hydac HDA 4746
PS3	Druck	bar	100 Hz		Hydac HDA 4746
PS4	Druck	bar	100 Hz		Hydac HDA 4746
PS5	Druck	bar	100 Hz		Hydac HDA 4746
PS6	Druck	bar	100 Hz		Hydac HDA 4746
FS1	Volumenstrom	l/min	10 Hz	Turbinenmess- prinzip	Hydac EVS 3106
FS2	Volumenstrom	l/min	10 Hz	Turbinenmess- prinzip	Hydac EVS 3106
TS1	Temperatur	°C	1 Hz		Hydac ETS 7246
TS2	Temperatur	°C	1 Hz		Hydac ETS 7247
TS3	Temperatur	°C	1 Hz		Hydac ETS 7248
TS4	Temperatur	°C	1 Hz		Hydac ETS 7249
VS1	Vibration	mm/s	1 Hz	RMS Wert nach ISO10816	Hauber 6440
EPS1	Motorleistung	W	100 Hz	Dreiphasen- Leistungs- messklemme	Beckhoff EL3403
CE	Kühleffizienz	%	1 Hz	virtueller Sensor	-
СР	Kühlleistung	kW	1 Hz	virtueller Sensor	-
SE	Wirkungsgrad	%	1 Hz	virtueller Sensor	

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Merkmalsextraktion

- Berechnen von Merkmalswerten bei unters.
 Sensoren und Zyklusintervallen
- Genutzte Merkmale
 - Signalform
 (Steigung, Min, Max, Position
 des Maximums,
 ...)
 - Statistische
 Momente
 (Median,
 Varianz,
 Kurtosis,
 Schiefe)

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Merkmalsselektion

Überwacht

- Korrelation
 - Pearson
 - Spearman

– ANOVA

 Ergebnis: Signifikante Merkmale zur Beschreibung von Schadens-/Verschleißzuständen von Komponenten

	Deieniels Liete einnifikenter Merkmele (Deereen Kerreletien)														
Bel	sple	el: l	Iste	sign	TIKa	nte	r ivie	rkm	ale (Pea	irsor	n Kor	relai	tion	
Cooler features Valve features Pu							ump features Accumulator featu					ures			
Sns	Fct	Int	r	Sns	Fct	Int	r	Sns	Fct	Int	r	Sns	Fct	Int	r
CE*	Me	10	0.99	PS1	Va	4	0.98	FS1	Me	5	0.42	EPS1	Sk	12	0.69
CE*	Me	12	0.99	PS2	Me	4	0.96	SE*	Me	8	0.38	PS2	Me	3	0.66
CE*	Me	2	0.99	PS2	Va	3	0.96	FS1	Va	9	0.34	FS1	SI	12	0.61
CE*	Me	4	0.99	PS2	Sk	3	0.95	SE*	Me	13	0.34	FS1	Va	1	0.59
CE*	Me	8	0.99	PS2	Ku	3	0.95	SE*	Me	9	0.34	FS1	Ku	12	0.59
CE*	Me	11	0.99	PS1	SI	4	0.95	SE*	Me	1	0.34	SE*	Sk	6	0.59
CE*	Me	6	0.99	SE*	Me	4	0.93	SE*	Me	2	0.33	SE*	Sk	12	0.58
CE*	Me	1	0.99	FS1	Sk	3	0.92	SE*	Me	10	0.31	PS2	Ku	6	0.58
CE*	Me	9	0.99	PS3	Sk	3	0.92	FS1	Me	9	0.31	PS1	Ku	12	0.57
CE*	Me	13	0.99	PS2	Sk	4	0.92	PS3	Me	11	0.31	FS1	Va	6	0.56
CE*	Me	3	0.99	PS3	Ku	3	0.9	PS3	Me	9	0.3	EPS1	Sk	6	0.55
CE*	Me	5	0.99	PS1	Me	4	0.89	PS3	Me	8	0.3	FS1	Sk	12	0.55
CE*	Me	7	0.99	PS3	Me	4	0.88	FS1	Me	11	0.29	PS3	Me	3	0.54
CP*	Me	10	0.99	FS1	Ku	3	0.87	FS1	Me	10	0.29	PS1	Ku	6	0.53
0			wine the se	_					East						
Ser	isor	aesc	ription	1					Feat	ure t	unctio	on desc	riptio	n	
CE: virtual sensor cooling efficiency CP: virtual sensor cooling powerMe: Median Va: Variance Sk: Skewness Ku: Kurtosis SI: SlopePS: pressur sensor SE: virtual sensor system efficiency FS: Flow sensor EPS: electrical power sensor pumpMe: Median Va: Variance Sk: Skewness SI: Slope															

Aufschlüsselung signifikanter Sensoren

- Sensoren der 30
 höchstkorrelierten
 Merkmale zu den untersuchten
 Schäden
- Insgesamt signifikant
 - Wirkungsgrad
 (SE, virtuell)
 - Motorleistung (EPS1)
 - Drücke (PS1-3)
 - Volumenstrom (FS1)
- Spezialfall Kühler-Überwachung

Folie 18

Weitere Dimensionsreduktion: Lineare Diskriminanzanalyse (LDA)

- Werkzeug zur überwachten Dimensionsreduktion (überwacht: benötigt Kenntnis über Zielgröße in Trainingsdaten)
- Lineare Projektion der zuvor selektierten Merkmale auf Diskriminanzfunktionen (DF), die den Schweregrad eines Schadens widerspiegeln
- Ziel: Maximieren der Klassentrennung (hier: Schadensstufen)
- Trainingsalgorithmus LDA: Identifizieren des Projektionsvektors zum Maximieren der Kriteriumsfunktion Γ

$$\Gamma = \frac{B}{W} = \frac{\sum_{g=1}^{G} I_g \cdot \left(\overline{Y}_g - \overline{Y}\right)^2}{\sum_{g=1}^{G} \sum_{i=1}^{I_g} \left(\overline{Y}_{gi} - \overline{Y}_g\right)^2}$$

B: between class scattering W: within class scattering

- G: number of classes
- I_g : number of elements in class g
- \overline{Y}_{g} : mean discriminant value in
- \overline{Y} : class g
- \overline{Y}_{gi} : overall mean

mean discriminant value of element i of class g

Folie 19

Overfitting: Aufpassen bei hochdimensionalen Datensätzen!

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Validierungsmethoden zum Vermeiden von Overfitting

z.B. K-fold cross validation:

- Datensatz wird in K Gruppen aufgeteilt. Jeweils eine Gruppe wird als Test-Datensatz, der Rest als Trainings-Datensatz genutzt → K Durchläufe
- Klassifiziere gewählten Punkt an Hand der restlichen Daten mit der gewählten Signalverarbeitungsmethode (PCA/LDA, SVM, kNN, ggfs. plus Klassifikator)
- Klassifizierungserfolg wird angegeben als Prozentsatz der korrekt klassifizierten Datenpunkte
- Bei kleinem Datensatz: LOOCV oder KFCV mit großem K sinnvoll Bei großem Datensatz: KFCV mit kleinem K sinnvoll

Charakteristische LDA Schadensfunktionen

- Schadensverlauf wird in 2-D LDA-Raum dargestellt
- DF1 erlaubt die Quantifizierung des Schweregrades
- Evaluierung des statistischen Modells durch die Projektion von Zwischengruppen (→ Interpolation) erfolgreich

[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]

Öltemperatur als Einflussgröße

- Schadenserkennung stark durch Öltemperaturbereich beeinflusst
- Trainingsdaten sollten Variationen der Öltemperatur beinhalten um Quereinflüsse gezielt unterdrücken zu können

Vergleich periodische und zufälliger Arbeitsprozesse

- Szenario I industrielle Applikation: vordefinierte und konstante Arbeitszyklen (Presse)
- Scenario II Mobilhydraulik: stark variierende Arbeitsabläufe (Radlader)
 - → Simuliert mit pseudo-zufälligen Lastniveaus

Klassifikationsraten [%] in Abh. vom Szenario (LDA, 20 Merkm.)

Arbeitszyklus		konstant		zufällig				LDA		SVM	SVM
Corr -Koeffizient		r		r O						(linear)	(RBF)
Zoit-	Kühlor	100.0	100.0	100.0	μ 100.0	N	Kühler	100	100	100	100
boroiche-	Kunier	100.0	100.0	100.0	100.0	/	Ventil	100	100	100	95.7
morkmolo	Ventil	100.0	100.0	100.0	100.0		Pumpe	73.6	80.0	72 /	64.2
merkinale	Pumpe	97.9	98.0	72.3	73.6	3.6		73.0	50.0	72.4	04.2
	Speich	90.4	88.8	54.2	54 0		Speicher	54.0	50.4	51.6	65.7
	opololi	0011	00.0	02	0 110		Ø	81.9	82.6	81.0	81.4

 \rightarrow Keine deutliche Verbesserung mit ANN/SVM

Vergleich der Klassifikationsraten [%] zwischen typischen Klassifikationsmethoden

Idee: Zeitreihenanalyse über mehrere Zyklen mit anschließender Merkmalsextraktion

→ Deutliche Verbesserung der Fehlererkennungsrate f
ür die pseudo-zuf
älligen Arbeitszyklen

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Stabilität und Übertragbarkeit

- Trainingsdaten mit
 Schadensinformation
 von System I (~ 1 Tag)
- Merkmalsextraktion,
 -selektion und
 Berechnung der LDA

 Projektion von Langzeitdaten (1 Monat) von System II nach Offset-Abgleich

 \rightarrow Das angelernte statistische Modell ist übertragbar mit geringen Anpassungen

→ Langzeit-Stabilität

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Übertragen des Konzepts auf spektrale Schwingungsdaten

Valve switching			Internal pump leakage			Accumulator pressure					Oil aeration					
	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct	Sns	Int	Freq [Hz]	Fct
1	2	4	1536 - 1792	Sk	2	12	1536 – 1792	Va	2	1	3328 - 3584	Ku	2	8	2816 - 3072	Va
2	2	4	3328 – 3584	Sk	2	6	1536 – 1792	Va	3	1	3328 – 3584	Ku	2	9	2816 – 3072	Va
3	2	4	768 – 1024	Max	2	10	1536 – 1792	Va	4	8	256 – 512	Va	1	3	256 – 512	Me
4	3	4	768 – 1024	Max	2	13	1536 – 1792	Va	2	1	3328 – 3584	Sk	1	1	256 – 512	Me
5	3	4	3328 - 3584	Sk	2	9	1536 – 1792	Va	3	1	3328 – 3584	Sk	1	4	256 – 512	Me
6	2	4	1536 - 1792	Ku	2	7	1536 - 1792	Va	4	11	256 - 512	Va	5	12	3584 - 3840	Va

[Quelle: N. Helwig, S. Klein, A. Schütze: Identification and Quantification of Hydraulic System Faults based on Multivariate Statistics using Spectral Vibration Features, Eurosensors 2015]

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Germany]

2015, Nuremberg,

and Measurement Technology, May 19-21

Mögliches Problem: Sensorfehler und deren Einfluss

ehrstuhl für Messtechnik. Prof. Dr. rer. nat. A. Schütze

Übertragen des Konzepts zum Erkennen von Sensorfehlern

- Idee: Nutzen der Signalrelationen des Sensornetzes
- Merkmalsextraktion anhand Mittelwertquotienten (a, b), paarweisen Sensorsignal-Korrelationen (c) und statistischen Parametern (d)
- Erkennungslimit:
 - Konstanter Offset
 - 0.4 % Full Scale
 - Driftrate
 - 0.5 ‰ pro Stunde
 - Rauschen
 - 20 dB SNR
 - Signal-Ausreißer
 - Einzelnes Event
- Einzelne Sensorfehler können erkannt werden, bevor sie zu Fehlklassifizierungen führen

[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Kompensation ausgefallener Sensoren

- Um Fehlalarme zu vermeiden, müssen die Daten von ausgefallenen Sensoren ausgeschlossen und das System neu antrainiert werden
- → Die "nächstbesten" Merkmale werden automatisch ausgewählt
- Bis zu fünf ausgefallene Sensoren können im Testsystem ohne signifikante Verschlechterung der Erkennungsrate kompensiert werden
- LDA im Vergleich zu anderen State-of-the-Art Methoden (ANN, SVM) konkurrenzfähig

[Quelle: Helwig, N., Pignanelli, E., Schütze, A.: Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System, SENSOR 2015 - 17th International Conference on Sensors and Measurement Technology, May 19-21, 2015, Nuremberg, Germany]

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Sensorfehler: Offset-Klassifizierung mit gleichbleibender Messunsicherheit

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Perspektiven der Ingenieurwissenschaften

Folie 29

Klassifizierung des Speichervordrucks: Einfluss der Umgebungstemperatur auf die Messunsicherheit

- LDA Berechnung mit 20 Merkmalen
- 4 Blasenspeicherdruckniveaus: 130, 115, 100, 90 bar
- 3 Öltemperaturbereiche (∆T): 1°C, 10°C, 20°C
- Größerer Temperaturbereich führt zu deutlich steigender Messunsicherheit (gleichmäßig für alle Druckniveaus, aber nicht linear mit ∆T)

Perspektiven der Ingenieurwissenschaften

Folie 30

Verschlechtertes Ventilschaltverhalten: Evaluierung zeigt andere Verteilung als Kalibrierdaten

- LDA Berechnung mit 10 Merkmalen
- N = 488
 (Kalibrierung)
- Kalibrierzustände: 100%, 90%, 80%, 73%
 - → normalverteilt
- Evaluierung durch Projektion der nicht für die Berechnung genutzten Zustände:
 - → nicht normalverteilt

Folie 31

UNIVERSITÄT

SAARLANDES

DES

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Zusammenfassung zur Multiparameter-Signalverarbeitung

- Klassifikationsraten von oder nahe 100% bei betrachteten Schadensfällen auf Basis installierter Prozesssensordaten
- Transfer des statistischen Modells erfolgreich
- Ansatz übertragbar auf spektral ausgewertete Schwingungsdaten
- Detektion typischer Sensorfehler und Kompensation von bis zu 5 ausgefallenen signifikanten Sensoren im Testsystem
- Berechnungsdauer von ~120 Mio. Rohdatenpunkten (~ 1 Tag)
 - (17 Sensoren, 6000 Werte pro Zyklus, 1250 cycles) @ Intel Core i5 CPU, 8 GB RAM
 - Merkmalsextraktion: ~ 5 min
 - Merkmalsselektion: 0,2 s pro Zielgröße
 - LDA: 0,1 s pro Zielgröße
 - Klassifikation eines neuen Zyklus: < 0,1 s pro Zielgröße
 - \rightarrow Technisch umsetzbar
- Momentan Ausweitung des Ansatzes auf weitere Anwendungsgebiete (Antriebstechnik, Werkzeugmaschinen, Fertigungs- und Produktionsanlagen)

iCM-Hydraulic @ Hannover Messe 2015

Lehrstuhl für Messtechnik Prof. Dr. rer. nat. A. Schütze

Automatisierte Merkmalsextraktion und -selektion

Masterarbeit Tizian Schneider

Anwendungsbeispiele

Zustandsüberwachung:

[N. Helwig, E. Pignanelli, and A. Schütze, "Condition Monitoring of a Complex Hydraulic System using Multivariate Statistics," in *Instrumentation and Measurement Technology Conference (I2MTC)*, 2015, pp. 210–215]

© ZeMA gGmbH

Merkmalsextraktion

- Extrahiere fundamentale Merkmale des Zyklus
- Unüberwachter Schritt ohne Kenntnis des Gruppenzugehörigkeiten
- Keine Methode kann optimale Leistung garantieren

Ziele:

- Konzentriere Information in wenigen Merkmalen
- Skalierbarkeit
- Bewahre natürliche Strukturen im Datensatz

Merkmalsextraktion: Adaptive lineare Approximation

- Automatische Unterteilung in lineare Abschnitte
- Rauschunterdrückung
- Gut f
 ür Ecken, Kanten und im Zeitbereich lokalisierte Information

Merkmalsextraktion: Hauptkomponentenanalyse

- Erste Hauptkomponenten beschreiben die Zyklusform
- Bartlett`s Test ermittelt die Anzahl benötigter Komponenten
- Beste lineare Transformation im Hinblick auf Approximationsfehler

Merkmalsextraktion: Beste Fourier Koeffizienten

- Transformation in den Frequenz-Bereich
- Für maximale Signalenergie extrahiere Koeffizienten mit größtem durchschnittlichen Betrag

Merkmalsextraktion: Beste Wavelet Koeffizienten

- Transformation in den Zeit-Frequenz-Bereich
- Daubechies-4-Wavelet zur Kompression linearer Signalbereiche
- Erste Koeffizienten f
 ür globale Merkmale und letzte f
 ür lokale Details

Merkmalsextraktion: Evaluation

© ZeMA gGmbH

Merkmalsselektion

- Auswahl der besten Merkmale für maschinelles Lernen
- Überwachter Schritt → Validierung notwendig!
- Keine Methode kann optimale Leistung garantieren

Ziele:

- Konzentriere Information in wenigen Merkmalen
- Skalierbarkeit

Merkmalsselektion: Typische Probleme

- Theoretisch nur Aussagen über "wahrscheinlich annährend irrelevante" Merkmale möglich
- Typische Probleme:

[I. Guyon, "An Introduction to Variable and Feature Selection," *J. Mach. Learn. Res.*, vol. 3, pp. 1157–1182, 2003]

© ZeMA gGmbH

Seite 43

66 Algorithmen betrachtet, 45 implementiert und getestet

© ZeMA

	Univeriete			
	Univariate	Multivariate		
Parametric	Model-free			
• <u>t-test</u> •	 Wilcoxon rank sum 	 <u>Bivariate</u> 	 Sequential forward selection 	<u>Random forest</u>
• <u>Bayesian</u> •	• <u>BSS/WSS</u>	• <u>Minimum</u>	Sequential backward selection	<u>Recursive feature elimination</u> SVM (REE-SVM)
• Regression	Rank products	maximum relevance mRMR	Generalized sequential search	Weights of logistic regression
• <u>Goodman</u>	<u>Threshold number of missclassification</u> TNoM	• <u>USC</u>	• <u>Plus I-take away r</u>	Optimal Brain Damage (OBD)
and Kruskal`s	 Spearman`s rank correlation coefficient 	 Markov blanket 	Floating Search	<u>Automatic Relevance</u> Determination (ARD)
• Pearson	Kendall tau rank correlation coeffiecient	<u>Relief Algorithm</u>	Oscillating search	Sensitivity of output
<u>correlation</u> coefficient	Signal to noise ratio	 Partial Least Squares (PLS) 	<u>Genetic algorithms</u>	Forward selection with least
• <u>Fisher</u>	Pearson`s Chi-squared test	Group correlation	Rapid randomized pruning	squares
<u>criterion</u>	• <u>G-test</u>	•1R decision tree	<u>Simulated annealing</u>	Gram Schmidt orthogonalisation
• <u>Bhattachar</u> <u>ya distance</u> •	 Kolmogorov distance 	• <u>C4.5 tree</u>	algorithms	procedure
•	Kullbak-Leibler divergence / mutual information	<u>CHAIS decision</u>	• Exhaustive search	<u>RFE perceptron</u>
	Jeffreys-Matusita distance	tree	Branch and Bound	Machines
•	 Vajda entropy / Bayes measure 	trees	● <u>BABM</u>	Gradient Descent on the R ² w ² Bound
•	 Memory based reasoning 			Variable scaling with maximum
•	 Information and Entropy 			entropy disrcimination
•	• <u>J-measure</u>			<u>Joint Classifier and Feature</u> <u>Optimization</u>
•	<u>Average weight of evidence</u>			• <u>Sparsity-term</u>
•	• <u>winimum description lengtn</u> MDL			

Automatische Merkmalsselektion - Ergebnisse

dataset	LDA, standard.	LDA	1NN, standard.	1NN	SVM linear	SVM RBF- Kernel
UST/20	RELIEFF filter 0.72/5.41	RELIEFF filter 0.72/5.24	RFESVM 0.12/0.55	Goodman Gamma 0.12/0.22	Bhattacharyya distance 0.55/0.72	Sensitivity to Output 0.12/0.28
UST/210	RFESVM 0.72/-	RFESVM 0.72/-	mRmR 0.06/1.66	GCC forward 0.12/28.6	RFESVM 0.28/1.90	RFESVM 0.12/3.11
WO3/20	Linear regression 0.70/4.65	Genetic Mutation 0.64/4.53	GCC forward 0.06/0.51	Bhattacharyya distance 0.13/0.25	GCC forward 0.32/0.83	Linear regression 0.06/0.45
WO3/210	GCC forward	GCC forward 0.45/-	Kolmogorov- Smirnov test 0.19/8.86	RELIEFF filter 0.13/34.0	RFESVM 0.25/1.28	RFESVM 0.06/1.66
WO3/840	mRmR 0.51/-	mRmR 0.57/-	RELIEFF filter 0.13/9.24	RFESVM 0.19/32.2	RFESVM 0.06/0.89	RFESVM 0.06/1.79
HYD/1079 RFESVM pump 0/-		RFESVM 0/-	RFESVM 0/30.3	Kendall Tau 0.28/16.9	RFESVM 0/0.97	RFESVM 0/10.5

Ausgewählt: RFESVM (lineare Klassifikation) und RELIEFF (nicht-lineare Klass.)

© ZeMA gGmbH

Methoden zur automatisierten Datenauswertung

Die vorgeschlagenen Methoden wurden auf sehr unterschiedliche, reale Datensätze angewandt.

Trotz des relativ simplen Lernalgorithmus wurden auf allen Datensätzen hervorragende Ergebnisse erzielt.

Ansatz liefert zwar keine Garantie für optimale, aber eine hohe Wahrscheinlichkeit für sehr gute Ergebnisse

